Search Results

You are looking at 11 - 19 of 19 items for :

  • Author: Romain Meeusen x
  • Physical Education and Coaching x
Clear All Modify Search
Restricted access

Kevin De Pauw, Bart Roelands, Stephen S. Cheung, Bas de Geus, Gerard Rietjens and Romain Meeusen

Purpose:

The aim of this systematic literature review was to outline the various preexperimental maximal cycle-test protocols, terminology, and performance indicators currently used to classify subject groups in sportscience research and to construct a classification system for cycling-related research.

Methods:

A database of 130 subject-group descriptions contains information on preexperimental maximal cycle-protocol designs, terminology of the subject groups, biometrical and physiological data, cycling experience, and parameters. Kolmogorov-Smirnov test, 1-way ANOVA, post hoc Bonferroni (P < .05), and trend lines were calculated on height, body mass, relative and absolute maximal oxygen consumption (VO2max), and peak power output (PPO).

Results:

During preexperimental testing, an initial workload of 100 W and a workload increase of 25 W are most frequently used. Three-minute stages provide the most reliable and valid measures of endurance performance. After obtaining data on a subject group, researchers apply various terms to define the group. To solve this complexity, the authors introduced the neutral term performance levels 1 to 5, representing untrained, recreationally trained, trained, well-trained, and professional subject groups, respectively. The most cited parameter in literature to define subject groups is relative VO2max, and therefore no overlap between different performance levels may occur for this principal parameter. Another significant cycling parameter is the absolute PPO. The description of additional physiological information and current and past cycling data is advised.

Conclusion:

This review clearly shows the need to standardize the procedure for classifying subject groups. Recommendations are formulated concerning preexperimental testing, terminology, and performance indicators.

Restricted access

Susan Vrijkotte, Romain Meeusen, Cloe Vandervaeren, Luk Buyse, Jeroen van Cutsem, Nathalie Pattyn and Bart Roelands

Purpose: The 2-bout exercise protocol has been developed to diagnose nonfunctional overreaching and the “overtraining syndrome.” It consists of 2 maximal exercise bouts separated by 4 hours. Mental fatigue negatively influences performance, but the effects of its occurrence during the 2-bout exercise protocol have never been investigated. The aim of this study was to examine whether mental fatigue (induced during the rest period) influences physical and cognitive performance during/after the second exercise bout of the 2-bout exercise protocol. Methods: Nine healthy, well-trained male cyclists participated in a single-blind, randomized, placebo-controlled crossover study. The intervention consisted of either 1.5-hour rest (control) or performing a computer-based Stroop task to induce mental fatigue. Cognitive (Eriksen Flanker task), physiological (lactate, maximum heart rate, and maximum wattage), and subjective data (mental fatigue-visual analog scale, Profile of Mood States, and rating of perceived exertion) were gathered. Results: Ratings of fatigue, tension, and mental fatigue were affected in the mental fatigue condition (P < .05). Neither physiological nor cognitive differences were found between conditions. Ratings of mental fatigue were already affected after the first maximum exercise test (P < .05). Conclusions: Neither physical nor cognitive performance was affected by mental fatigue, but subjective ratings did reveal significant differences. It is recommended to exclude mentally challenging tasks during the 2-bout exercise protocol rest period to ascertain unaffected subjective test results. This study should be repeated in athletes diagnosed with nonfunctional overreaching/overtraining syndrome.

Restricted access

Anissa Cherif, Romain Meeusen, Abdulaziz Farooq, Joong Ryu, Mohamed Amine Fenneni, Zoran Nikolovski, Sittana Elshafie, Karim Chamari and Bart Roelands

Purpose:

To examine the effects of 3 d of intermittent fasting (3d-IF: abstaining from eating/drinking from dawn to sunset) on physical performance and metabolic responses to repeated sprints (RSs).

Methods:

Twenty-one active males performed an RS test (2 sets: 5 × 5-s maximal sprints with 25 s of recovery between and 3 min of recovery between sets on an instrumented treadmill) in 2 conditions: counterbalanced fed/control session (CS) and fasting session (FS). Biomechanical and biochemical markers were assessed preexercise and postexercise.

Results:

Significant main effects of IF were observed for sprints: maximal speed (P = .016), mean speed (P = .015), maximal power (P = .035), mean power (P = .049), vertical stiffness (P = .032), and vertical center-of-mass displacement (P = .047). Sprint speed and vertical stiffness decreased during the 1st (P = .003 and P = .005) and 2nd sprints (P = .046 and P = .048) of set 2, respectively. Postexercise insulin decreased in CS (P = .023) but not in FS (P = .230). Free-fatty-acid levels were higher in FS than in CS at preexercise (P < .001) and at postexercise (P = .009). High-density lipoprotein cholesterol (HDL-C) was higher at postexercise in FS (1.32 ± 0.22 mmol/L) than in CS (1.26 ± 0.21 mmol/L, P = .039). The triglyceride (TG) concentration was decreased in FS (P < .05) compared with CS.

Conclusions:

3d-IF impaired speed and power through a decrease in vertical stiffness during the initial runs of the 2nd set of RS. The findings of the current study confirmed the benefits of 3d-IF: improved HDL-C and TG profiles while maintaining total cholesterol and low-density lipoprotein cholesterol levels. Moreover, improving muscle power might be a key factor to retain a higher vertical stiffness and to partly counteract the negative effects of intermittent fasting.

Restricted access

Twan ten Haaf, Selma van Staveren, Danilo Iannetta, Bart Roelands, Romain Meeusen, Maria F. Piacentini, Carl Foster, Leo Koenderman, Hein A.M. Daanen and Jos J. de Koning

Purpose: Reaction time has been proposed as a training monitoring tool, but to date, results are equivocal. Therefore, it was investigated whether reaction time can be used as a monitoring tool to establish overreaching. Methods: The study included 30 subjects (11 females and 19 males, age: 40.8 [10.8] years, VO2max: 51.8 [6.3] mL/kg/min) who participated in an 8-day cycling event. The external exercise load increased approximately 900% compared with the preparation period. Performance was measured before and after the event using a maximal incremental cycling test. Subjects with decreased performance after the event were classified as functionally overreached (FOR) and others as acutely fatigued (AF). A choice reaction time test was performed 2 weeks before (pre), 1 week after (post), and 5 weeks after (follow-up), as well as at the start and end of the event. Results: A total of 14 subjects were classified as AF and 14 as FOR (2 subjects were excluded). During the event, reaction time at the end was 68 ms (95% confidence interval, 46–89) faster than at the start. Reaction time post event was 41 ms (95% confidence interval, 12–71) faster than pre event and follow-up was 55 ms faster (95% confidence interval, 26–83). The time by class interaction was not significant during (P = .26) and after (P = .43) the event. Correlations between physical performance and reaction time were not significant (all Ps > .30). Conclusions: No differences in choice reaction time between AF and FOR subjects were observed. It is suggested that choice reaction time is not valid for early detection of overreaching in the field.

Open access

Twan ten Haaf, Selma van Staveren, Erik Oudenhoven, Maria F. Piacentini, Romain Meeusen, Bart Roelands, Leo Koenderman, Hein A.M. Daanen, Carl Foster and Jos J. de Koning

Purpose:

To investigate whether monitoring of easily measurable stressors and symptoms can be used to distinguish early between acute fatigue (AF) and functional overreaching (FOR).

Methods:

The study included 30 subjects (11 female, 19 male; age 40.8 ± 10.8 y, VO2max 51.8 ± 6.3 mL · kg–1 · min–1) who participated in an 8-d cycling event over 1300 km with 18,500 climbing meters. Performance was measured before and after the event using a maximal incremental test. Subjects with decreased performance after the event were classified as FOR, others as AF. Mental and physical well-being, internal training load, resting heart rate, temperature, and mood were measured daily during the event. Differences between AF and FOR were analyzed using mixed-model ANOVAs. Logistic regression was used to determine the best predictors of FOR after 3 and 6 d of cycling.

Results:

Fifteen subjects were classified as FOR and 14 as AF (1 excluded). Although total group changes were observed during the event, no differences between AF and FOR were found for individual monitoring parameters. The combination of questionnaire-based changes in fatigue and readiness to train after 3 d cycling correctly predicted 78% of the subjects as AF or FOR (sensitivity = 79%, specificity = 77%).

Conclusions:

Monitoring changes in fatigue and readiness to train, using simple visual analog scales, can be used to identify subjects likely to become FOR after only 3 d of cycling. Hence, we encourage athlete support staff to monitor not only fatigue but also the subjective integrated mental and physical readiness to perform.

Restricted access

Maria Francesca Piacentini, Oliver C. Witard, Cajsa Tonoli, Sarah R. Jackman, James E. Turner, Arie K. Kies, Asker E. Jeukendrup, Kevin D. Tipton and Romain Meeusen

Context:

Monitoring mood state is a useful tool for avoiding nonfunctional overreaching. Brain-derived neurotrophic factor (BDNF) is implicated in stress-related mood disorders.

Purpose:

To investigate the impact of intensified training-induced mood disturbance on plasma BDNF concentrations at rest and in response to exercise.

Methods:

Eight cyclists performed 1 wk of normal (NT), 1 wk of intensified (INT), and 1 wk of recovery (REC) training. Fasted blood samples were collected before and after exercise on day 7 of each training week and analyzed for plasma BDNF and cortisol concentrations. A 24-item Profile of Mood State questionnaire was administered on day 7 of each training week, and global mood score (GMS) was calculated.

Results:

Time-trial performance was impaired during INT (P = .01) and REC (P = .02) compared with NT. Basal plasma cortisol (NT = 153 ± 16 ng/mL, INT = 130 ± 11 ng/mL, REC = 150 ± 14 ng/ml) and BDNF (NT = 484 ± 122 pg/mL, INT = 488 ± 122 pg/mL, REC = 383 ± 56 pg/mL) concentrations were similar between training conditions. Likewise, similar exercise-induced increases in cortisol and BDNF concentrations were observed between training conditions. GMS was 32% greater during INT vs NT (P < .001).

Conclusions:

Consistent with a state of functional overreaching (FOR), impairments in performance and mood state with INT were restored after 1 wk of REC. These results support evidence for mood changes before plasma BDNF concentrations as a biochemical marker of FOR and that cortisol is not a useful marker for predicting FOR.

Restricted access

Kevin De Pauw, Bart Roelands, Jeroen Van Cutsem, Lieselot Decroix, Angelica Valente, Kim Taehee, Robert B. Lettan II, Andres E. Carrillo and Romain Meeusen

Introduction:

Nasal spray (NAS) containing caffeine (CAF) or glucose (GLUC) activates sensory(motor) cortices.

Purpose:

To investigate the influence of CAF or GLUC NAS on exercise and cognitive performance.

Methods:

Eleven male subjects (age 22 ± 2 y) performed a maximal cycle test and 2 familiarization and 3 experimental trials. Each trial included a 30-s Wingate test and a 30-min time-trial (TT) performance test interspersed by 15 min of rest. Before and after each exercise test a Stroop task was conducted. Placebo NAS with or without CAF or GLUC was provided before each exercise session and at each completed 25% of the TT. Exercise-performance, physiological, and cognitive measures were obtained. Magnitude-based inferences determined the likelihood that NAS solutions would be beneficial, trivial, or negative to exercise-performance measures based on the smallest worthwhile effect. Physiological and cognitive measures were analyzed using (non)parametric tests (P < .05).

Results:

GLUC NAS substantially increased the average power output during the TT (very likely beneficial: 98%). No further worthwhile exercise-performance enhancements were found for both substances. In addition, no significant differences in physiological and cognitive measures were observed. In line with mouth rinsing, GLUC was shown to substantially enhance endurance performance, probably due to the activation of the olfactory pathway and/or extra-oral sweet-taste receptors.

Conclusion:

GLUC NAS enhances endurance performance, which indicates a novel administration route. The higher activity in sensory brain cortices probably elicited the ergogenic effect. However, no further physiological and cognitive changes occurred, indicating that higher doses of substrates might be required.

Full access

Michael Kellmann, Maurizio Bertollo, Laurent Bosquet, Michel Brink, Aaron J. Coutts, Rob Duffield, Daniel Erlacher, Shona L. Halson, Anne Hecksteden, Jahan Heidari, K. Wolfgang Kallus, Romain Meeusen, Iñigo Mujika, Claudio Robazza, Sabrina Skorski, Ranel Venter and Jürgen Beckmann

The relationship between recovery and fatigue and its impact on performance has attracted the interest of sport science for many years. An adequate balance between stress (training and competition load, other life demands) and recovery is essential for athletes to achieve continuous high-level performance. Research has focused on the examination of physiological and psychological recovery strategies to compensate external and internal training and competition loads. A systematic monitoring of recovery and the subsequent implementation of recovery routines aims at maximizing performance and preventing negative developments such as underrecovery, nonfunctional overreaching, the overtraining syndrome, injuries, or illnesses. Due to the inter- and intraindividual variability of responses to training, competition, and recovery strategies, a diverse set of expertise is required to address the multifaceted phenomena of recovery, performance, and their interactions to transfer knowledge from sport science to sport practice. For this purpose, a symposium on Recovery and Performance was organized at the Technical University Munich Science and Study Center Raitenhaslach (Germany) in September 2016. Various international experts from many disciplines and research areas gathered to discuss and share their knowledge of recovery for performance enhancement in a variety of settings. The results of this meeting are outlined in this consensus statement that provides central definitions, theoretical frameworks, and practical implications as a synopsis of the current knowledge of recovery and performance. While our understanding of the complex relationship between recovery and performance has significantly increased through research, some important issues for future investigations are also elaborated.

Open access

Ronald J. Maughan, Louise M. Burke, Jiri Dvorak, D. Enette Larson-Meyer, Peter Peeling, Stuart M. Phillips, Eric S. Rawson, Neil P. Walsh, Ina Garthe, Hans Geyer, Romain Meeusen, Luc van Loon, Susan M. Shirreffs, Lawrence L. Spriet, Mark Stuart, Alan Vernec, Kevin Currell, Vidya M. Ali, Richard G.M. Budgett, Arne Ljungqvist, Margo Mountjoy, Yannis Pitsiladis, Torbjørn Soligard, Uğur Erdener and Lars Engebretsen

Nutrition usually makes a small but potentially valuable contribution to successful performance in elite athletes, and dietary supplements can make a minor contribution to this nutrition program. Nonetheless, supplement use is widespread at all levels of sport. Products described as supplements target different issues, including the management of micronutrient deficiencies, supply of convenient forms of energy and macronutrients, and provision of direct benefits to performance or indirect benefits such as supporting intense training regimens. The appropriate use of some supplements can offer benefits to the athlete, but others may be harmful to the athlete’s health, performance, and/or livelihood and reputation if an anti-doping rule violation results. A complete nutritional assessment should be undertaken before decisions regarding supplement use are made. Supplements claiming to directly or indirectly enhance performance are typically the largest group of products marketed to athletes, but only a few (including caffeine, creatine, specific buffering agents and nitrate) have good evidence of benefits. However, responses are affected by the scenario of use and may vary widely between individuals because of factors that include genetics, the microbiome, and habitual diet. Supplements intended to enhance performance should be thoroughly trialed in training or simulated competition before implementation in competition. Inadvertent ingestion of substances prohibited under the anti-doping codes that govern elite sport is a known risk of taking some supplements. Protection of the athlete’s health and awareness of the potential for harm must be paramount, and expert professional opinion and assistance is strongly advised before embarking on supplement use.