Search Results

You are looking at 21 - 30 of 36 items for

  • Author: Gary Slater x
Clear All Modify Search
Restricted access

Alisa Nana, Gary J. Slater, Arthur D. Stewart and Louise M. Burke

Dual energy X-ray absorptiometry (DXA) is rapidly becoming more accessible and popular as a technique to monitor body composition, especially in athletic populations. Although studies in sedentary populations have investigated the validity of DXA assessment of body composition, few studies have examined the issues of reliability in athletic populations and most studies which involve DXA measurements of body composition provide little information on their scanning protocols. This review presents a summary of the sources of error and variability in the measurement of body composition by DXA, and develops a theoretical model of best practice to standardize the conduct and analysis of a DXA scan. Components of this protocol include standardization of subject presentation (subjects rested, overnight-fasted and in minimal clothing) and positioning on the scanning bed (centrally aligned in a standard position using custom-made positioning aids) as well as manipulation of the automatic segmentation of regional areas of the scan results. Body composition assessment implemented with such protocol ensures a high level of precision, while still being practical in an athletic setting. This ensures that any small changes in body composition are confidently detected and correctly interpreted. The reporting requirements for studies involving DXA scans of body composition include details of the DXA machine and software, subject presentation and positioning protocols, and analysis protocols.

Restricted access

Kristen L. MacKenzie-Shalders, Neil A. King, Nuala M. Byrne and Gary J. Slater

Increasing the frequency of protein consumption is recommended to stimulate muscle hypertrophy with resistance exercise. This study manipulated dietary protein distribution to assess the effect on gains in lean mass during a rugby preseason. Twenty-four developing elite rugby athletes (age 20.1 ± 1.4 years, mass 101.6 ± 12.0 kg; M ± SD) were instructed to consume high biological value (HBV) protein at their main meals and immediately after resistance exercise while limiting protein intake between meals. To manipulate protein intake frequency, the athletes consumed 3 HBV liquid protein supplements (22 g protein) either with main meals (bolus condition) or between meals (frequent condition) for 6 weeks in a 2 × 2 crossover design. Dietary intake and change in lean mass values were compared between conditions by analysis of covariance and correlational analysis. The dietary manipulation successfully altered the protein distribution score (average number of eating occasions containing > 20 g of protein) to 4.0 ± 0.8 and 5.9 ± 0.7 (p < .01) for the bolus and frequent conditions, respectively. There was no difference in gains in lean mass between the bolus (1.4 ± 1.5 kg) and frequent (1.5 ± 1.4 kg) conditions (p = .91). There was no clear effect of increasing protein distribution from approximately 4–6 eating occasions on changes in lean mass during a rugby preseason. However, other dietary factors may have augmented adaptation.

Restricted access

Louise M. Burke, Gary Slater, Elizabeth M. Broad, Jasmina Haukka, Sofie Modulon and William G. Hopkins

We undertook a dietary survey of 167 Australian Olympic team athletes (80 females and 87 males) competing in endurance sports (n = 41), team sports (n = 31), sprint- or skill-based sports (n = 67), and sports in which athletes are weight-conscious (n = 28). Analysis of their 7-day food diaries provided mean energy intakes, nutrient intakes, and eating patterns. Higher energy intakes relative to body mass were reported by male athletes compared with females, and by endurance athletes compared with other athletes. Endurance athletes reported substantially higher intakes of carbohydrate (CHO) than other athletes, and were among the athletes most likely to consume CHO during and after training sessions. Athletes undertaking weight-conscious sports reported relatively low energy intakes and were least likely to consume CHO during a training session or in the first hour of recovery. On average, athletes reported eating on ~5 separate occasions each day, with a moderate relationship between the number of daily eating occasions and total energy intake. Snacks, defined as food or drink consumed between main meals, provided 23% of daily energy intake and were chosen from sources higher in CHO and lower in fat and protein than foods chosen at meals. The dietary behaviors of these elite athletes were generally consistent with guidelines for sports nutrition, but intakes during and after training sessions were often sub-optimal. Although it is of interest to study the periodicity of fluid and food intake by athletes, it is difficult to compare across studies due to a lack of standardized terminology.

Restricted access

Gary J. Slater, Anthony J. Rice, David Jenkins, Jason Gulbin and Allan G. Hahn

To strengthen the depth of lightweight rowing talent, we sought to identify experienced heavyweight rowers who possessed physique traits that predisposed them to excellence as a lightweight. Identified athletes (n = 3) were monitored over 16 wk. Variables measured included performance, anthropometric indices, and selected biochemical and metabolic parameters. All athletes decreased their body mass (range 2.0 to 8.0 kg), with muscle mass accounting for a large proportion of this (31.7 to 84.6%). Two athletes were able to maintain their performance despite reductions in body mass. However, performance was compromised for the athlete who experienced the greatest weight loss. In summary, smaller heavyweight rowers can successfully make the transition into the lightweight category, being nationally competitive in their first season as a lightweight.

Restricted access

Reid Reale, Gary Slater, Gregory R. Cox, Ian C. Dunican and Louise M. Burke

Novel methods of acute weight loss practiced by combat sport athletes include “water loading,” the consumption of large fluid volumes for several days prior to restriction. We examined claims that this technique increases total body water losses, while also assessing the risk of hyponatremia. Male athletes were separated into control (n = 10) and water loading (n = 11) groups and fed a standardized energy-matched diet for 6 days. Days 1–3 fluid intake was 40 and 100 ml/kg for control and water loading groups, respectively, with both groups consuming 15 ml/kg on Day 4 and following the same rehydration protocol on Days 5 and 6. We tracked body mass (BM), urine sodium, urine specific gravity and volume, training-related sweat losses and blood concentrations of renal hormones, and urea and electrolytes throughout. Physical performance was assessed preintervention and postintervention. Following fluid restriction, there were substantial differences between groups in the ratio of fluid input/output (39%, p < .01, effect size = 1.2) and BM loss (0.6% BM, p = .02, effect size = 0.82). Changes in urine specific gravity, urea and electrolytes, and renal hormones occurred over time (p < .05), with an interaction of time and intervention on blood sodium, potassium, chloride, urea, creatinine, urine specific gravity, and vasopressin (p < .05). Measurements of urea and electrolyte remained within reference ranges, and no differences in physical performance were detected over time or between groups. Water loading appears to be a safe and effective method of acute BM loss under the conditions of this study. Vasopressin-regulated changes in aquaporin channels may potentially partially explain the mechanism of increased body water loss with water loading.

Restricted access

Christine E. Dziedzic, Megan L. Ross, Gary J. Slater and Louise M. Burke

Context:

There is interest in including recommendations for the replacement of the sodium lost in sweat in individualized hydration plans for athletes.

Purpose:

Although the regional absorbent-patch method provides a practical approach to measuring sweat sodium losses in field conditions, there is a need to understand the variability of estimates associated with this technique.

Methods:

Sweat samples were collected from the forearms, chest, scapula, and thigh of 12 cyclists during 2 standardized cycling time trials in the heat and 2 in temperate conditions. Single measure analysis of sodium concentration was conducted immediately by ion-selective electrodes (ISE). A subset of 30 samples was frozen for reanalysis of sodium concentration using ISE, flame photometry (FP), and conductivity (SC).

Results:

Sweat samples collected in hot conditions produced higher sweat sodium concentrations than those from the temperate environment (P = .0032). A significant difference (P = .0048) in estimates of sweat sodium concentration was evident when calculated from the forearm average (mean ± 95% CL; 64 ± 12 mmol/L) compared with using a 4-site equation (70 ± 12 mmol/L). There was a high correlation between the values produced using different analytical techniques (r 2 = .95), but mean values were different between treatments (frozen FP, frozen SC > immediate ISE > frozen ISE; P < .0001).

Conclusion:

Whole-body sweat sodium concentration estimates differed depending on the number of sites included in the calculation. Environmental testing conditions should be considered in the interpretation of results. The impact of sample freezing and subsequent analytical technique was small but statistically significant. Nevertheless, when undertaken using a standardized protocol, the regional absorbent-patch method appears to be a relatively robust field test.

Restricted access

Gary Slater, David Jenkins, Peter Logan, Hamilton Lee, Matthew Vukovich, John A. Rathmacher and Allan G. Hahn

This investigation evaluated the effects of oral β-Hydroxy-β-Methylbutyrate (HMB) supplementation on training responses in resistance-trained male athletes who were randomly administered HMB in standard encapsulation (SH), HMB in time release capsule (TRH), or placebo (P) in a double-blind fashion. Subjects ingested 3 g · day−1 of HMB or placebo for 6 weeks. Tests were conducted pre-supplementation and following 3 and 6 weeks of supplementation. The testing battery assessed body mass, body composition (using dual energy x-ray absorptiometry), and 3-repetition maximum isoinertial strength, plus biochemical parameters, including markers of muscle damage and muscle protein turnover. While the training and dietary intervention of the investigation resulted in significant strength gains (p < .001) and an increase in total lean mass (p = .01), HMB administration had no influence on these variables. Likewise, biochemical markers of muscle protein turnover and muscle damage were also unaffected by HMB supplementation. The data indicate that 6 weeks of HMB supplementation in either SH or TRH form does not influence changes in strength and body composition in response to resistance training in strength-trained athletes.

Restricted access

Peter D. Kupcis, Gary J. Slater, Cathryn L. Pruscino and Justin G. Kemp

Purpose:

The effect of sodium bicarbonate (NaHCO3) ingestion on prerace hydration status and on 2000 m ergometer performance in elite lightweight rowers was examined using a randomized, cross-over, double-blinded design.

Methods:

To simulate body mass (BM) management strategies common to lightweight rowing, oarsmen reduced BM by approx. 4% in the 24 h preceding the trials, and, in the 2 h before performance, undertook nutritional recovery consisting of mean 43.2 kJ/kg, 2.2 g of CHO per kilogram, 31.8 mg of Na+ per kilogram, 24.3 mL of H2O per kilogram, and NaHCO3 (0.3 g of NaHCO3 per kilogram BM) or placebo (PL; 0.15 g of corn flour per kilogram BM) at 70 to 90 min before racing.

Results:

At 25 min before performance, NaHCO3 had increased blood pH (7.48 ± 0.02 vs PL: 7.41 ± 0.03, P = .005) and bicarbonate concentrations (29.1 ± 1.8 vs PL: 23.9 ± 1.6 mmol/L, P < .001), whereas BM, urine specific gravity, and plasma volume changes were similar between trials. Rowing ergometer times were similar between trials (NaHCO3: 397.8 ± 12.6; PL: 398.6 ± 13.8 s, P = .417), whereas posttest bicarbonate (11.6 ± 2.3 vs 9.4 ± 1.8 mmol/L, P = .003) and lactate concentration increases (13.4 ± 1.7 vs 11.9 ± 1.9 mmol/L, P = .001) were greater with NaHCO3.

Conclusion:

Sodium bicarbonate did not further enhance rehydration or performance in lightweight rowers when undertaking recommended post-weigh-in nutritional recovery strategies.

Restricted access

Amelia J. Carr, Gary J. Slater, Christopher J. Gore, Brian Dawson and Louise M. Burke

Purpose:

The aim of this study was to determine the effect and reliability of acute and chronic sodium bicarbonate ingestion for 2000-m rowing ergometer performance (watts) and blood bicarbonate concentration [HCO3 ].

Methods:

In a crossover study, 7 well-trained rowers performed paired 2000-m rowing ergometer trials under 3 double-blinded conditions: (1) 0.3 grams per kilogram of body mass (g/kg BM) acute bicarbonate; (2) 0.5 g/kg BM daily chronic bicarbonate for 3 d; and (3) calcium carbonate placebo, in semi-counterbalanced order. For 2000-m performance and [HCO3 ], we examined differences in effects between conditions via pairwise comparisons, with differences interpreted in relation to the likelihood of exceeding smallest worthwhile change thresholds for each variable. We also calculated the within-subject variation (percent typical error).

Results:

There were only trivial differences in 2000-m performance between placebo (277 ± 60 W), acute bicarbonate (280 ± 65 W) and chronic bicarbonate (282 ± 65 W); however, [HCO3 ] was substantially greater after acute bicarbonate, than with chronic loading and placebo. Typical error for 2000-m mean power was 2.1% (90% confidence interval 1.4 to 4.0%) for acute bicarbonate, 3.6% (2.5 to 7.0%) for chronic bicarbonate, and 1.6% (1.1 to 3.0%) for placebo. Postsupplementation [HCO3 ] typical error was 7.3% (5.0 to 14.5%) for acute bicarbonate, 2.9% (2.0 to 5.7%) for chronic bicarbonate and 6.0% (1.4 to 11.9%) for placebo.

Conclusion:

Performance in 2000-m rowing ergometer trials may not substantially improve after acute or chronic bicarbonate loading. However, performances will be reliable with both acute and chronic bicarbonate loading protocols.

Restricted access

Adam J. Zemski, Shelley E. Keating, Elizabeth M. Broad, Damian J. Marsh, Karen Hind and Gary J. Slater

During preseason training, rugby union (RU) athletes endeavor to enhance physical performance characteristics that are aligned with on-field success. Specific physique traits are associated with performance; therefore body composition assessment is routinely undertaken in elite environments. This study aimed to quantify preseason physique changes in elite RU athletes with unique morphology and divergent ethnicity. Twenty-two White and Polynesian professional RU athletes received dual-energy X-ray absorptiometry assessments at the beginning and conclusion of an 11-week preseason. Interactions between on-field playing position and ethnicity in body composition adaptations were explored, and the least significant change model was used to evaluate variations at the individual level. There were no combined interaction effects with the variables position and ethnicity and any body composition measure. After accounting for baseline body composition, Whites gained more lean mass during the preseason than Polynesians (2,425 ± 1,303 g vs. 1,115 ± 1,169 g; F = 5.4, p = .03). Significant main effects of time were found for whole body and all regional measures with fat mass decreasing (F = 31.1–52.0, p < .01), and lean mass increasing (F = 12.0–40.4, p < .01). Seventeen athletes (nine White and eight Polynesian) had a reduction in fat mass, and eight athletes (six White and two Polynesian) increased lean mass. This study describes significant and meaningful physique changes in elite RU athletes during a preseason period. Given the individualized approach applied to athletes in regard to nutrition and conditioning interventions, a similar approach to that used in this study is recommended to assess physique changes in this population.