Search Results

You are looking at 41 - 50 of 59 items for

  • Author: David Pyne x
Clear All Modify Search
Restricted access

Courtney J. McGowan, David B. Pyne, Kevin G. Thompson, John S. Raglin and Ben Rattray

Context:

An exercise bout completed several hours prior to an event may improve competitive performance later that same day.

Purpose:

To examine the influence of morning exercise on afternoon sprint-swimming performance.

Methods:

Thirteen competitive swimmers (7 male, mean age 19 ± 3 y; 6 female, mean age 17 ± 3 y) completed a morning session of 1200 m of variedintensity swimming (SwimOnly), a combination of varied-intensity swimming and a resistance-exercise routine (SwimDry), or no morning exercise (NoEx). After a 6-h break, swimmers completed a 100-m time trial.

Results:

Time-trial performance was faster in SwimOnly (1.6% ± 0.6, mean ± 90% confidence limit, P < .01) and SwimDry (1.7% ± 0.7%, P < .01) than in NoEx. Split times for the 25- to 50-m distance were faster in both SwimOnly (1.7% ± 1.2%, P = .02) and SwimDry (1.5% ± 0.8%, P = .01) than in NoEx. The first 50-m stroke rate was higher in SwimOnly (0.70 ± 0.21 Hz, mean ± SD, P = .03) and SwimDry (0.69 ± 0.18 Hz, P = .05) than in NoEx (0.64 ± 0.16 Hz). Before the afternoon session, core (0.2°C ± 0.1°C [mean ± 90% confidence limit], P = .04), body (0.2°C ± 0.1°C, P = .02), and skin temperatures (0.3°C ± 0.3°C, P = .02) were higher in SwimDry than in NoEx.

Conclusions:

Completion of a morning swimming session alone or together with resistance exercise can substantially enhance sprint-swimming performance completed later the same day.

Restricted access

Sian V. Allen, Tom J. Vandenbogaerde, David B. Pyne and Will G. Hopkins

Talent identification and development typically involve allocation of resources toward athletes selected on the basis of early-career performance.

Purpose:

To compare 4 methods for early-career selection of Australia’s 2012 Olympic-qualifying swimmers.

Methods:

Performance times from 5738 Australian swimmers in individual Olympic events at 101 competitions from 2000 to 2012 were analyzed as percentages of world-record times using 4 methods that retrospectively simulated early selection of swimmers into a talent-development squad. For all methods, squad-selection thresholds were set to include 90% of Olympic qualifiers. One method used each swimmer’s given-year performance for selection, while the others predicted each swimmer’s 2012 performance. The predictive methods were regression and neural-network modeling using given-year performance and age and quadratic trajectories derived using mixed modeling of each swimmer’s annual best career performances up to the given year. All methods were applied to swimmers in 2007 and repeated for each subsequent year through 2011.

Results:

The regression model produced squad sizes of 562, 552, 188, 140, and 93 for the years 2007 through 2011. Corresponding proportions of the squads consisting of Olympic qualifiers were 11%, 11%, 32%, 43%, and 66%. Neural-network modeling produced similar outcomes, but the other methods were less effective. Swimming Australia’s actual squads ranged from 91 to 67 swimmers but included only 50−74% of Olympic qualifiers.

Conclusions:

Large talent-development squads are required to include most eventual Olympic qualifiers. Criteria additional to age and performance are needed to improve early selection of swimmers to talent-development squads.

Restricted access

Louise M. Burke, Clare Wood, David B. Pyne, Richard D. Telford and Philo U. Saunders

Eighteen highly-trained runners ran two half marathons in mild environmental conditions, 3 wk apart, consuming either 426 ± 227 mL of a flavored placebo drink (PLACEBO) or an equivalent volume of water (386 ± 185 mL) and a commercial gel (GEL) supplying 1.1 ± 0.2 g/kg body mass (BM) carbohydrate (CHO). Voluntary consumption of this fluid was associated with a mean BM change of ~ 2.4%. Runners performed better in their second race by 0.9% or 40 s (P = 0.03). Three runners complained of gastrointestinal discomfort in GEL trial, which produced a clear impairment of half-marathon performance by 2.4% or 105 s (P = 0.03 ) . The effect of GEL on performance was trivial: time was improved b y 0.3% or 14 s compared with PLACEBO (P = 0.52). Consuming the gel was associated with a 2.4% slower time through the 2 × 200 m feed zone; adding a trivial ~ 2 s to race time. Although benefits to half marathon performance were not detected, the theoretical improvement during 1-h exercise with CHO intake merits further investigation.

Restricted access

Jade A.Z. Haycraft, Stephanie Kovalchik, David B. Pyne and Sam Robertson

Purpose: To establish levels of association between physical fitness and match activity profiles of players in the Australian Football League (AFL) participation pathway. Methods: Players (N = 287, range 10.9–19.1 y) were assessed on 20-m sprint, AFL agility, vertical jump and running vertical jump, 20-m multistage fitness test (MSFT), and Athletic Abilities Assessment. Match activity profiles were obtained from global positioning system measures: relative speed, maximal velocity, and relative high-speed running. Results: Correlational analyses revealed moderate relationships between sprint (r = .32–.57, P ≤ .05) and jump test scores (r = .34–.78, P ≤ .05) and match activity profiles in Local U12, Local U14, National U16, and National U18s, except jump tests in National U18s. AFL agility was also moderate to strongly associated in Local U12, Local U14, Local U18, and National U16s (r = .37–.87, P ≤ .05) and strongly associated with relative speed in Local U18s (r = .84, P ≤ .05). Match relative speed and high-speed running were moderate to strongly associated with 20-m MSFT in Local U14, Local U18, and National U18s (r = .41–.95, P ≤ .05) and Athletic Abilities Assessment in Local U12 and Local U18s (r = .35–.67, P ≤ .05). Match activity profile demands increased between Local U12 and National U16s, then plateaued. Conclusions: Physical fitness relates more strongly to match activity profiles in younger adolescent and national-level players. Recruiters should consider adolescent physical fitness and match activity profiles as dynamic across the AFL participation pathway.

Restricted access

Naroa Etxebarria, Shaun D’Auria, Judith M. Anson, David B. Pyne and Richard A. Ferguson

Purpose:

The patterns of power output in the ~1-h cycle section of Olympic-distance triathlon races are not well documented. Here the authors establish a typical cycling-race profile derived from several International Triathlon Union elite-level draftinglegal triathlon races.

Methods:

The authors collated 12 different race power profiles from elite male triathletes (N = 5, age 25 ± 5 y, body mass 65.5 ± 5.6 kg; mean ± SD) during 7 international races. Power output was recorded using SRM cranks and analyzed with proprietary software.

Results:

The mean power output was 252 ± 33 W, or 3.9 ± 0.5 W/kg in relative terms, with a coefficient of variation of 71% ± 13%. Normalized power (power output an athlete could sustain if intensity were maintained constant without any variability) for the entire cycle section was 291 ± 29 W, or 40 ± 13 W higher than the actual mean power output. There were 34 ± 14 peaks of power output above 600 W and ~18% time spent at >100% of maximal aerobic power.

Conclusion:

Cycling during Olympic-distance triathlon, characterized by frequent and large power variations including repeat supramaximal efforts, equates to a higher workload than cycling at constant power.

Restricted access

Naroa Etxebarria, Judith M. Anson, David B. Pyne and Richard A. Ferguson

Purpose:

To determine how cycling with a variable (triathlon-specific) power distribution affects subsequent running performance and quantify relationships between an individual cycling power profile and running ability after cycling.

Methods:

Twelve well-trained male triathletes (VO2peak 4.9 ± 0.5 L/min; mass 73.5 ± 7.7 kg; mean ± SD) undertook a cycle VO2peak and maximal aerobic power (MAP) test and a power profile involving 6 maximal efforts (6 s to 10 min). Each subject then performed 2 experimental 1-h cycle trials, both at a mean power of 65% MAP, at either variable power (VAR) ranging from 40% to 140% MAP or constant power (CON) followed by an outdoor 9.3-km time-trial run. Subjects also completed a control 9.3-km run with no preceding exercise.

Results:

The 9.3-km run time was 42 ± 37 s slower (mean ± 90% confidence limits [CL]) after VAR (35:32 ± 3:18 min:s, mean ± SD) compared with CON cycling (34:50 ± 2:49 min:s). This decrement after VAR appeared primarily in the first half of the run (35 ± 20 s; mean ± 90% CL). Higher blood lactate and rating of perceived exertion after 1 h VAR cycling were moderately correlated (r = .51–.55; ± ~.40) with a larger decrement in run performance. There were no clear associations between the power-profile test and decrement in run time after VAR compared with CON.

Conclusions:

A highly variable power distribution in cycling is likely to impair 10-km triathlon run performance. Training to lower physiological and perceptual responses during cycling should limit the negative effects on triathlon running.

Restricted access

Markus J. Klusemann, David B. Pyne, Will G. Hopkins and Eric J. Drinkwater

Competition-specific conditioning for tournament basketball games is challenging, as the demands of tournament formats are not well characterized.

Purpose:

To compare the physical, physiological, and tactical demands of seasonal and tournament basketball competition and determine the pattern of changes within an international tournament.

Methods:

Eight elite junior male basketball players (age 17.8 ± 0.2 y, height 1.93 ± 0.07 m, mass 85 ± 3 kg; mean ± SD) were monitored in 6 seasonal games played over 4 mo in an Australian second-division national league and in 7 games of an international under-18 tournament played over 8 days. Movement patterns and tactical elements were coded from video and heart rates recorded by telemetry.

Results:

The frequency of running, sprinting, and shuffling movements in seasonal games was higher than in tournament games by 8–15% (99% confidence limits ± ~8%). Within the tournament, jogging and low- to medium-intensity shuffling decreased by 15–20% (± ~14%) over the 7 games, while running, sprinting, and high-intensity shuffling increased 11–81% (± ~25%). There were unclear differences in mean and peak heart rates. The total number of possessions was higher in seasonal than in tournament games by 8% (± 10%).

Conclusions:

Coaches should consider a stronger emphasis on strength and power training in their conditioning programs to account for the higher activity of seasonal games. For tournament competition, strategies that build a sufficient aerobic capacity and neuromuscular resilience to maintain high-intensity movements need to be employed. A focus on half-court tactics accounts for the lower number of possessions in tournaments.

Restricted access

Iñigo Mujika, Rafa González de Txabarri, Sara Maldonado-Martín and David B. Pyne

The warm-up procedure in traditional rowing usually involves continuous low-intensity rowing and short bouts of intense exercise, lasting about 60 min.

Purpose:

To compare the effects of a traditional and an experimental 30-min warm-up of lower intensity on indoor rowing time-trial performance.

Methods:

Fourteen highly trained male rowers (age 25.9 ± 5.3 y, height 1.86 ± 0.06 m, mass 80.4 ± 5.2 kg, peak aerobic power 352.0 ± 24.4 W; mean ± SD) performed 2 indoor rowing trials 12 d apart. Rowers were randomly assigned to either LONG or SHORT warm-ups using a crossover design, each followed by a 10-min all-out fixed-seat rowing-ergometer time trial.

Results:

Mean power output during the time trial was substantially higher after SHORT (322 ± 18 vs 316 ± 17 W), with rowers generating substantially more power in the initial 7.5 min of the time trial after SHORT. LONG elicited substantially higher mean warm-up heart rate than SHORT (134 ± 11 vs 121 ± 13 beats/min), higher pre–time-trial rating of perceived exertion (10.2 ± 1.4 vs 7.6 ± 1.7) and blood lactate (1.7 ± 0.4 mM vs 1.2 ± 0.2 mM), but similar heart rate (100 ± 14 vs 102 ± 9 beats/min). No substantial differences were observed between LONG and SHORT in stroke rate (39.4 ± 2.0 vs 39.4 ± 2.2 strokes/min) or mean heart rate (171 ± 6 vs 171 ± 8 beats/min) during the time trial, nor in blood lactate after it (11.8 ± 2.5 vs 12.1 ± 2.0 mM).

Conclusion:

A warm-up characterized by lower intensity and shorter duration should elicit less physiological strain and promote substantially higher power production in the initial stages of a rowing time trial.

Restricted access

Dean G. Higham, David B. Pyne, Judith M. Anson and Anthony Eddy

Although the characteristics of 15-a-side rugby union players have been well defined, there is little information on rugby sevens players.

Purpose:

The authors profiled the anthropometric, physiological, and performance qualities of elite-level rugby sevens players and quantified relationships between these characteristics.

Methods:

Eighteen male international rugby sevens players undertook anthropometric (body mass, height, sum of 7 skinfolds, lean-mass index), acceleration and speed (40-m sprint), muscle-power (vertical jump), repeatedsprint- ability (6 × 30-m sprint), and endurance (Yo-Yo Intermittent Recovery test and treadmill VO2max) testing. Associations between measurements were assessed by correlation analysis.

Results:

Rugby sevens players had anthropometric characteristics (body mass 89.7 ± 7.6 kg, height 1.83 ± 0.06 m, sum of 7 skinfolds 52.2 ± 11.5 mm; mean ± SD) similar to those of backs in international 15-player rugby union. Acceleration and speed (40-m sprint 5.11 ± 0.15 s), muscle-power (vertical jump 66 ± 7 cm), and endurance (VO2max 53.8 ± 3.4 mL · kg−1 · min−1 ) qualities were similar to, or better than, those of professional 15-a-side players. Coefficients of variation ranged from 2.5% to 22%. Relative VO2max was largely correlated with Yo-Yo distance (r = .60, .21−.82; 90% confidence interval) and moderately correlated with 40-m sprint time (r = −.46, −.75 to −.02) and repeated-sprint ability (r = −.38, −.72 to .09).

Conclusions:

International rugby sevens players require highly developed speed, power, and endurance to tolerate the demands of competition. The small between-athletes variability of characteristics in rugby sevens players highlights the need for relatively uniform physical and performance standards in contrast with 15-a-side players.

Restricted access

Philo U. Saunders, Richard D. Telford, David B. Pyne, Christopher J. Gore and Allan G. Hahn

We quantified the effect of an extended live high-train low (LHTL) simulated altitude exposure followed by a series of training camps at natural moderate altitude on competitive performance in seven elite middle-distance runners (Vo2max 71.4 ± 3.4 mL·min−1·kg−1, mean ± SD). Runners spent 44 ± 7 nights (mean ± SD) at a simulated altitude of 2846 ± 32 m, and a further 4 X 7- to 10-d training at natural moderate altitude (1700–2200 m) before racing. The combination of simulated LHTL and natural altitude training improved competitive performance by 1.9% (90% confidence limits, 1.3-2.5%). Middle-distance runners can confidently use a combination of simulated and natural altitude to stimulate adaptations responsible for improving performance.