Search Results

You are looking at 81 - 90 of 94 items for

  • Author: Louise M. Burke x
Clear All Modify Search
Restricted access

Matthew W. Hoon, Nathan A. Johnson, Phillip G. Chapman and Louise M. Burke

The purpose of this review was to examine the effect of nitrate supplementation on exercise performance by systematic review and meta-analysis of controlled human studies. A search of four electronic databases and cross-referencing found 17 studies investigating the effect of inorganic nitrate supplementation on exercise performance that met the inclusion criteria. Beetroot juice and sodium nitrate were the most common supplements, with doses ranging from 300 to 600 mg nitrate and prescribed in a manner ranging from a single bolus to 15 days of regular ingestion. Pooled analysis showed a significant moderate benefit (ES = 0.79, 95% CI: 0.23–1.35) of nitrate supplementation on performance for time to exhaustion tests (p = .006). There was a small but insignificant beneficial effect on performance for time trials (ES = 0.11, 95% CI: –0.16–0.37) and graded exercise tests (ES = 0.26, 95% CI: –0.10–0.62). Qualitative analysis suggested that performance benefits are more often observed in inactive to recreationally active individuals and when a chronic loading of nitrate over several days is undertaken. Overall, these results suggest that nitrate supplementation is associated with a moderate improvement in constant load time to exhaustion tasks. Despite not reaching statistical significance, the small positive effect on time trial or graded exercise performance may be meaningful in an elite sport context. More data are required to clarify the effect of nitrate supplementation on exercise performance and to elucidate the optimal way to implement supplementation.

Restricted access

Eric C. Haakonssen, Megan L. Ross, Louise E. Cato, Alisa Nana, Emma J. Knight, David G. Jenkins, David T. Martin and Louise M. Burke

Some athletes avoid dairy in the meal consumed before exercise due to fears about gastrointestinal discomfort. Regular exclusion of dairy foods may unnecessarily reduce intake of high quality proteins and calcium with possible implications for body composition and bone health. This study compared the effects of meals that included (Dairy) or excluded (Control) dairy foods on gastric comfort and subsequent cycling performance. Well-trained female cyclists (n = 32; mean ± SD; 24.3 ± 4.1 y; VO2peak 57.1 ± 4.9 ml/kg/min) completed two trials (randomized cross-over design) in which they consumed a meal (2 g/kg carbohydrate and 54 kJ/kg) 2 hr before a 90-min cycle session (80 min at 60% maximal aerobic power followed by a 10-min time trial; TT). The dairy meal contained 3 servings of dairy foods providing ~1350 mg calcium. Gut comfort and palatability were measured using questionnaires. Performance was measured as maximum mean power during the TT (MMP10min). There was no statistical or clinical evidence of an effect of meal type on MMP10min with a mean difference (Dairy – Control) of 4 W (95% CI [–2, 9]). There was no evidence of an association between pretrial gut comfort and meal type (p = .15) or between gut comfort delta scores and meal type postmeal (p = .31), preexercise (p = .17) or postexercise (p = .80). There was no statistical or clinical evidence of a difference in palatability between meal types. In summary, substantial amounts of dairy foods can be included in meals consumed before strenuous cycling without impairing either gut comfort or performance.

Restricted access

Alisa Nana, Gary J. Slater, Will G. Hopkins, Shona L. Halson, David T. Martin, Nicholas P. West and Louise M. Burke

Purpose:

The implications of undertaking DXA scans using best practice protocols (subjects fasted and rested) or a less precise but more practical protocol in assessing chronic changes in body composition following training and a specialized recovery technique were investigated.

Methods:

Twenty-one male cyclists completed an overload training program, in which they were randomized to four sessions per week of either cold water immersion therapy or control groups. Whole-body DXA scans were undertaken with best practice protocol (Best) or random activity protocol (Random) at baseline, after 3 weeks of overload training, and after a 2-week taper. Magnitudes of changes in total, lean and fat mass from baseline-overload, overload-taper and baseline-taper were assessed by standardization (Δmean/SD).

Results:

The standard deviations of change scores for total and fat-free soft tissue mass (FFST) from Random scans (2–3%) were approximately double those observed in the Best (1–2%), owing to extra random errors associated with Random scans at baseline. There was little difference in change scores for fat mass. The effect of cold water immersion therapy on baseline-taper changes in FFST was possibly harmful (-0.7%; 90% confidence limits ±1.2%) with Best scans but unclear with Random scans (0.9%; ±2.0%). Both protocols gave similar possibly harmful effects of cold water immersion therapy on changes in fat mass (6.9%; ±13.5% and 5.5%; ±14.3%, respectively).

Conclusions:

An interesting effect of cold water immersion therapy on training-induced changes in body composition might have been missed with a less precise scanning protocol. DXA scans should be undertaken with Best.

Restricted access

Megan L. Ross, Brian Stephens, Chris R. Abbiss, David T. Martin, Paul B. Laursen and Louise M. Burke

Purpose:

To observe voluntary fluid and carbohydrate intakes and thermoregulatory characteristics of road cyclists during 2 multiday, multiple-stage races in temperate conditions.

Methods:

Ten internationally competitive male cyclists competed in 2 stage races (2009 Tour of Gippsland, T1, n = 5; 2010 Tour of Geelong, T2, n = 5) in temperate conditions (13.2–15.8°C; 54–80% relative humidity). Body mass (BM) was recorded immediately before and after each stage. Peak gastrointestinal temperature (TGI peak) was recorded throughout each stage. Cyclists recalled the types and volumes of fluid and food consumed throughout each stage.

Results:

Although fluid intake varied according to the race format, there were strong correlations between fluid intake and distance across all formats of racing, in both tours (r = .82, r = .92). Within a stage, the relationship between finishing time and fluid intake was trivial. Mean BM change over a stage was 1.3%, with losses >2% BM occurring on 5 out of 43 measured occasions and the fastest competitors incurring lower BM changes. Most subjects consumed carbohydrate at rates that met the new guidelines (30–60 g/h for 2–3 h, ~90 g/h for >3 h), based on event duration. There were consistent observations of TGI peak >39°C during stages of T1 (67%) and T2 (73%) despite temperate environmental conditions.

Conclusion:

This study captured novel effects of highintensity stage racing in temperate environmental conditions. In these conditions, cyclists were generally able to find opportunities to consume fluid and carbohydrate to meet current guidelines. We consistently observed high TGI peak, which merits further investigation.

Restricted access

Ida A. Heikura, Louise M. Burke, Dan Bergland, Arja L.T. Uusitalo, Antti A. Mero and Trent Stellingwerff

Purpose: The authors investigated the effects of sex, energy availability (EA), and health status on the change in hemoglobin mass (ΔHbmass) in elite endurance athletes over ∼3–4 wk of live-high–train-high altitude training in Flagstaff, AZ (2135 m; n = 27 women; n = 21 men; 27% 2016 Olympians). Methods: Precamp and postcamp Hbmass (optimized carbon monoxide rebreathing method) and iron status were measured, EA was estimated via food and training logs, and a Low Energy Availability in Females Questionnaire (LEAFQ) and a general injury/illness questionnaire were completed. Hypoxic exposure (h) was calculated with low (<500 h), moderate (500–600 h), and high (>600 h) groupings. Results: Absolute and relative percentage ΔHbmass was significantly greater in women (6.2% [4.0%], P < .001) than men (3.2% [3.3%], P = .008). %ΔHbmass showed a dose–response with hypoxic exposure (3.1% [3.8%] vs 4.9% [3.8%] vs 6.8% [3.7%], P = .013). Hbmasspre was significantly higher in eumenorrheic vs amenorrheic women (12.2 [1.0] vs 11.3 [0.5] g/kg, P = .004). Although statistically underpowered, %ΔHbmass was significantly less in sick (n = 4, −0.5% [0.4%]) vs healthy (n = 44, 5.4% [3.8%], P < .001) athletes. There were no significant correlations between self-reported iron intake, sex hormones, or EA on Hbmass outcomes. However, there was a trend for a negative correlation between LEAFQ score and %ΔHbmass (r = −.353, P = .07). Conclusions: The findings confirm the importance of baseline Hbmass and exposure to hypoxia on increases in Hbmass during altitude training, while emphasizing the importance of athlete health and indices of EA on an optimal baseline Hbmass and hematological response to hypoxia.

Restricted access

Ida A. Heikura, Arja L.T. Uusitalo, Trent Stellingwerff, Dan Bergland, Antti A. Mero and Louise M. Burke

We aimed to (a) report energy availability (EA), metabolic/reproductive function, bone mineral density, and injury/illness rates in national/world-class female and male distance athletes and (b) investigate the robustness of various diagnostic criteria from the Female Athlete Triad (Triad), Low Energy Availability in Females Questionnaire, and relative energy deficiency in sport (RED-S) tools to identify risks associated with low EA. Athletes were distinguished according to benchmarks of reproductive function (amenorrheic [n = 13] vs. eumenorrheic [n = 22], low [lowest quartile of reference range; n = 10] versus normal testosterone [n = 14]), and EA calculated from 7-day food and training diaries (< or >30 kcal·kg−1 fat-free mass·day−1). Sex hormones (p < .001), triiodothyronine (p < .05), and bone mineral density (females, p < .05) were significantly lower in amenorrheic (37%) and low testosterone (40%; 15.1 ± 3.0 nmol/L) athletes, and bone injuries were ∼4.5-fold more prevalent in amenorrheic (effect size = 0.85, large) and low testosterone (effect size = 0.52, moderate) groups compared with others. Categorization of females and males using Triad or RED-S tools revealed that higher risk groups had significantly lower triiodothyronine (female and male Triad and RED-S: p < .05) and higher number of all-time fractures (male Triad: p < .001; male RED-S and female Triad: p < .01) as well as nonsignificant but markedly (up to 10-fold) higher number of training days lost to bone injuries during the preceding year. Based on the cross-sectional analysis, current reproductive function (questionnaires/blood hormone concentrations) appears to provide a more objective and accurate marker of optimal energy for health than the more error-prone and time-consuming dietary and training estimation of EA. This study also offers novel findings that athlete health is associated with EA indices.

Restricted access

Matthew W. Hoon, Andrew M. Jones, Nathan A. Johnson, Jamie R. Blackwell, Elizabeth M. Broad, Bronwen Lundy, Anthony J. Rice and Louise M. Burke

Context:

Beetroot juice is a naturally rich source of inorganic nitrate (NO3 ), a compound hypothesized to enhance endurance performance by improving exercise efficiency.

Purpose:

To investigate the effect of different doses of beetroot juice on 2000-m ergometer-rowing performance in highly trained athletes.

Methods:

Ten highly trained male rowers volunteered to participate in a placebo-controlled, double-blinded crossover study. Two hours before undertaking a 2000-m rowing-ergometer test, subjects consumed beetroot juice containing 0 mmol (placebo), 4.2 mmol (SINGLE), or 8.4 mmol (DOUBLE) NO3 . Blood samples were taken before supplement ingestion and immediately before the rowing test for analysis of plasma [NO3 ] and [nitrite (NO2 )].

Results:

The SINGLE dose demonstrated a trivial effect on time to complete 2000 m compared with placebo (mean difference: 0.2 ± 2.5 s). A possibly beneficial effect was found with DOUBLE compared with SINGLE (mean difference –1.8 ± 2.1 s) and with placebo (–1.6 ± 1.6 s). Plasma [NO2 ] and [NO3 ] demonstrated a dose-response effect, with greater amounts of ingested nitrate leading to substantially higher concentrations (DOUBLE > SINGLE > placebo). There was a moderate but insignificant correlation (r = –.593, P = .055) between change in plasma [NO2 ] and performance time.

Conclusion:

Compared with nitratedepleted beetroot juice, a high (8.4 mmol NO3 ) but not moderate (4.2 mmol NO3 ) dose of NO3 in beetroot juice, consumed 2 h before exercise, may improve 2000-m rowing performance in highly trained athletes.

Restricted access

Alannah K. A. McKay, Ida A. Heikura, Louise M. Burke, Peter Peeling, David B. Pyne, Rachel P.L. van Swelm, Coby M. Laarakkers and Gregory R. Cox

Sleeping with low carbohydrate (CHO) availability is a dietary strategy that may enhance training adaptation. However, the impact on an athlete’s health is unclear. This study quantified the effect of a short-term “sleep-low” dietary intervention on markers of iron regulation and immune function in athletes. In a randomized, repeated-measures design, 11 elite triathletes completed two 4-day mixed cycle run training blocks. Key training sessions were structured such that a high-intensity training session was performed in the field on the afternoon of Days 1 and 3, and a low-intensity training (LIT) session was performed on the following morning in the laboratory (Days 2 and 4). The ingestion of CHO was either divided evenly across the day (HIGH) or restricted between the high-intensity training and LIT sessions, so that the LIT session was performed with low CHO availability (LOW). Venous blood and saliva samples were collected prior to and following each LIT session and analyzed for interleukin-6, hepcidin 25, and salivary immunoglobulin-A. Concentrations of interleukin-6 increased acutely after exercise (p < .001), but did not differ between dietary conditions or days. Hepcidin 25 increased 3-hr postexercise (p < .001), with the greatest increase evident after the LOW trial on Day 2 (2.5 ± 0.9 fold increase ±90% confidence limit). The salivary immunoglobulin-A secretion rate did not change in response to exercise; however, it was highest during the LOW condition on Day 4 (p = .046). There appears to be minimal impact to markers of immune function and iron regulation when acute exposure to low CHO availability is undertaken with expert nutrition and coaching input.

Restricted access

Harry E. Routledge, Jill J. Leckey, Matt J. Lee, Andrew Garnham, Stuart Graham, Darren Burgess, Louise M. Burke, Robert M. Erskine, Graeme L. Close and James P. Morton

Purpose: To better understand the carbohydrate (CHO) requirement of Australian Football (AF) match play by quantifying muscle glycogen utilization during an in-season AF match. Methods: After a 24-h CHO-loading protocol of 8 and 2 g/kg in the prematch meal, 2 elite male forward players had biopsies sampled from m. vastus lateralis before and after participation in a South Australian Football League game. Player A (87.2 kg) consumed water only during match play, whereas player B (87.6 kg) consumed 88 g CHO via CHO gels. External load was quantified using global positioning system technology. Results: Player A completed more minutes on the ground (115 vs 98 min) and covered greater total distance (12.2 vs 11.2 km) than player B, although with similar high-speed running (837 vs 1070 m) and sprinting (135 vs 138 m). Muscle glycogen decreased by 66% in player A (pre: 656 mmol/kg dry weight [dw], post: 223 mmol/kg dw) and 24% in player B (pre: 544 mmol/kg dw, post: 416 mmol/kg dw). Conclusion: Prematch CHO loading elevated muscle glycogen concentrations (ie, >500 mmol/kg dw), the magnitude of which appears sufficient to meet the metabolic demands of elite AF match play. The glycogen cost of AF match play may be greater than in soccer and rugby, and CHO feeding may also spare muscle glycogen use. Further studies using larger sample sizes are now required to quantify the interindividual variability of glycogen cost of match play (including muscle and fiber-type-specific responses), as well examining potential metabolic and ergogenic effects of CHO feeding.

Restricted access

Ben Desbrow, Joanna McCormack, Louise M. Burke, Gregory R. Cox, Kieran Fallon, Matthew Hislop, Ruth Logan, Nello Marino, Susan M. Sawyer, Greg Shaw, Anita Star, Helen Vidgen and Michael Leveritt

It is the position of Sports Dietitians Australia (SDA) that adolescent athletes have unique nutritional requirements as a consequence of undertaking daily training and competition in addition to the demands of growth and development. As such, SDA established an expert multidisciplinary panel to undertake an independent review of the relevant scientific evidence and consulted with its professional members to develop sports nutrition recommendations for active and competitive adolescent athletes. The position of SDA is that dietary education and recommendations for these adolescent athletes should reinforce eating for long term health. More specifically, the adolescent athlete should be encouraged to moderate eating patterns to reflect daily exercise demands and provide a regular spread of high quality carbohydrate and protein sources over the day, especially in the period immediately after training. SDA recommends that consideration also be given to the dietary calcium, Vitamin D and iron intake of adolescent athletes due to the elevated risk of deficiency of these nutrients. To maintain optimal hydration, adolescent athletes should have access to fluids that are clean, cool and supplied in sufficient quantities before, during and after participation in sport. Finally, it is the position of SDA that nutrient needs should be met by core foods rather than supplements, as the recommendation of dietary supplements to developing athletes over-emphasizes their ability to manipulate performance in comparison with other training and dietary strategies.