Search Results

You are looking at 1 - 5 of 5 items for :

  • Author: Brian Moore x
  • Sport and Exercise Science/Kinesiology x
Clear All Modify Search
Restricted access

Brian M. Moore, Joseph T. Adams, Sallie Willcox and Joseph Nicholson

Background: A variety of physical interventions have been used to improve reactive balance in older adults. Purpose: To summarize the effectiveness of active treatment approaches to improve reactive postural responses in community-dwelling older adults. Design: Systematic review guided by PRISMA guidelines. Study Selection: A literature search included the databases PubMed, OVID, CINAHL, ClinicalTrials.gov, OTseeker, and PEDro up to December 2017. Randomized controlled trials that evaluated quantitative measures of reactive postural responses in healthy adults following participation in an active physical training program were included. Data Synthesis: Of 4,481 studies initially identified, 11 randomized controlled trials covering 313 participants were selected for analysis. Study designs were heterogeneous, preventing a quantitative analysis. Nine of the 11 studies reported improvements in reactive postural responses. Conclusions: Several clinically feasible training methods have the potential to improve reactive postural responses in older adults; however, conclusions on the efficacy of treatment methods are limited because of numerous methodological issues and heterogeneity in outcomes and intervention procedures.

Restricted access

Charles R. Pedlar, Gregory P. Whyte, Richard Burden, Brian Moore, Gill Horgan and Noel Pollock

This case study examines the impact of low serum ferritin (sFe) on physiological assessment measures and performance in a young female 1500-m runner undertaking approximately 95–130 km/wk training. The study spans 4 race seasons and an Olympic Games. During this period, 25 venous blood samples were analyzed for sFe and hemoglobin (Hb); running economy, VO2max, and lactate threshold were measured on 6 occasions separated by 8–10 mo. Training was carefully monitored including 65 monitored treadmill training runs (targeting an intensity associated with the onset of blood lactate accumulation) using blood lactate and heart rate. Performances at competitive track events were recorded. All data were compared longitudinally. Mean sFe was 24.5 ± 7.6 μg/L (range 10–47), appearing to be in gradual decline with the exception of 2 data points (37 and 47 μg/L) after parenteral iron injections before championships, when the lowest values tended to occur, coinciding with peak training volumes. Each season, 1500-m performance improved, from 4:12.8 in year 1 to 4:03.5 in year 4. VO2max (69.8 ± 2.0 mL · kg−1 · min−1) and running economy (%VO2max at a fixed speed of 16 km/h; max 87.8%, min 80.3%) were stable across time and lactate threshold improved (from 14 to 15.5 km/h). Evidence of anemia (Hb <12 g/dL) was absent. These unique data demonstrate that in 1 endurance athlete, performance can continue to improve despite an apparent iron deficiency. Raising training volume may have caused increased iron utilization; however, the effect of this on performance is unknown. Iron injections were effective in raising sFe in the short term but did not appear to affect the long-term pattern.

Restricted access

Kimberly Volterman, Daniel Moore, Joyce Obeid, Elizabeth A. Offord and Brian W. Timmons

Purpose:

In adults, rehydration after exercise in the heat can be enhanced with a protein-containing beverage; however, whether this applies to children remains unknown. This study examined the effect of milk protein intake on postexercise rehydration in children.

Method:

Fifteen children (10–12 years) performed three exercise trials in the heat (34.4 ± 0.2 °C, 47.9 ± 1.1% relative humidity). In a randomized, counterbalanced crossover design, participants consumed iso-caloric and electrolyte-matched beverages containing 0 g (CONT), 0.76 g (Lo-PRO) or 1.5 g (Hi-PRO) of milk protein/100 mL in a volume equal to 150% of their body mass (BM) loss during exercise. BM was then assessed over 4 h of recovery.

Results:

Fluid balance demonstrated a significant condition × time interaction (p = .012) throughout recovery; Hi-PRO was less negative than CONT at 2 hr (p = .01) and tended to be less negative at 3 h (p = .07). Compared with CONT, beverage retention was enhanced by Hi-PRO at 2 h (p < .05).

Conclusion:

A postexercise beverage containing milk protein can favorably affect fluid retention in children. Further research is needed to determine the optimal volume and composition of a rehydration beverage for complete restoration of fluid balance.

Restricted access

Nathan A. Lewis, Ann Redgrave, Mark Homer, Richard Burden, Wendy Martinson, Brian Moore and Charles R. Pedlar

Purpose: To examine a diagnosis of unexplained underperformance syndrome (UUPS, or overtraining syndrome) in an international rower describing a full recovery and return to elite competition the same year. Methods: On diagnosis and 4 and 14 mo postdiagnosis, detailed assessments including physiological, nutritional, and biomarkers were made. Results: Clinical examination and laboratory results for hematology, biochemistry, thyroid function, immunology, vitamins, and minerals were unremarkable and did not explain the presentation and diagnosis. Redox biomarkers including hydroperoxides, plasma antioxidant capacity, red blood cell glutathione, superoxide dismutase, coenzyme Q10, vitamin E (α- and γ-tocopherol), and carotenoids (lutein, α-carotene, β-carotene) provided evidence of altered redox homeostasis. The recovery strategy began with 12 d of training abstinence and nutritional interventions, followed by 6 wk of modified training. At 4 mo postintervention, performance had recovered strongly, resulting in the athlete’s becoming European champion that same year. Further improvements in physiological and performance indices were observed at 14 mo postintervention. Physiologically relevant increases in concentrations of carotenoids were achieved at each postintervention time point, exceeding the reported critical-difference values. Conclusions: Increasing athlete phytonutrient intake may enhance recovery and tolerance of training and environmental stressors, reducing the risk of unexplained UUPS. Alterations in redox homeostasis should be considered as part of the medical management in UUPS. This is the first reported case study of an elite athlete with alterations in redox homeostasis in conjunction with a diagnosis of UUPS.

Restricted access

Jean L. McCrory, David R. Lemmon, H. Joseph Sommer, Brian Prout, Damon Smith, Deborah W. Korth, Javier Lucero, Michael Greenisen, Jim Moore, Inessa Kozlovskaya, Igor Pestov, Victor Stepansov, Yevgeny Miyakinchenko and Peter R. Cavanagh

A treadmill with vibration isolation and stabilization designed for the International Space Station (ISS) was evaluated during Shuttle mission STS-81. Three crew members ran and walked on the device, which floats freely in zero gravity. For the majority of the more than 2 hours of locomotion studied, the treadmill showed peak to peak Linear and angular displacements of less than 2.5 cm and 2.5°, respectively. Vibration transmitted to the vehicle was within the microgravity allocation limits that are defined for the ISS. Refinements to the treadmill and harness system are discussed. This approach to treadmill design offers the possibility of generating 1G-like loads on the lower extremities while preserving the microgravity environment of the ISS for structural safety and vibration free experimental conditions.