Search Results

You are looking at 1 - 2 of 2 items for :

  • Author: Christian Maiwald x
  • Sport and Exercise Science/Kinesiology x
Clear All Modify Search
Restricted access

Peter Wolf, Renate List, Thomas Ukelo, Christian Maiwald and Alex Stacoff

Before conclusions can be drawn with respect to the quality of adaptations in human gait, the day-to-day consistency of the variables of interest must be known. The present study estimated the day-to-day consistency of kinematic variables collected during barefoot walking and running. Sixteen healthy subjects performed two gait analysis sessions based on skin markers. Test sessions were at least 1 week apart. In total, 48 ranges of motion were monitored for the hip, knee, ankle, and midfoot joint. Based on differences between the repeated gait analysis sessions, the day-to-day consistency was estimated. It was found that the day-to-day consistency was of the magnitude of 3 to 4 degrees for almost all ranges of motion independently of the test condition, the investigated joints, or the cardinal body plane. It was concluded that future studies on effects of interventions or on the characterization of pathological versus normative gait should consider the provided values of day-to-day consistency to improve their interpretation and conclusions.

Restricted access

Christian Maiwald, Stefan Grau, Inga Krauss, Marlene Mauch, Detlef Axmann and Thomas Horstmann

The aim of this study was to provide detailed information on rationales, calculations, and results of common methods used to quantify reproducibility in plantar pressure variables. Recreational runners (N = 95) performed multiple barefoot running trials in a laboratory setup, and pressure variables were analyzed in nine distinct subareas of the foot. Reproducibility was assessed by calculating intraclass correlation coefficients (ICC) and the root mean square error (RMSE). Intraclass correlation coefficients ranged from 0.58 to 0.99, depending on the respective variable and type of ICC. Root mean square errors ranged between 2.3 and 3.1% for relative force–time integrals, between 0.07 and 0.23 for maximum force (Fmax), and between 107 and 278 kPa for maximum pressure (Pmax), depending on the subarea of the foot. Force–time integral variables demonstrated the best within-subject reproducibility. Rear-foot data suffered from slightly increased measurement error and reduced reproducibility compared with the forefoot.