Search Results

You are looking at 1 - 3 of 3 items for :

  • Author: Christopher D. Askew x
  • Sport and Exercise Science/Kinesiology x
Clear All Modify Search
Restricted access

Jessica M. Stephens, Shona Halson, Joanna Miller, Gary J. Slater and Christopher D. Askew

The use of cold-water immersion (CWI) for postexercise recovery has become increasingly prevalent in recent years, but there is a dearth of strong scientific evidence to support the optimization of protocols for performance benefits. While the increase in practice and popularity of CWI has led to multiple studies and reviews in the area of water immersion, the research has predominantly focused on performance outcomes associated with postexercise CWI. Studies to date have generally shown positive results with enhanced recovery of performance. However, there are a small number of studies that have shown CWI to have either no effect or a detrimental effect on the recovery of performance. The rationale for such contradictory responses has received little attention but may be related to nuances associated with individuals that may need to be accounted for in optimizing prescription of protocols. To recommend optimal protocols to enhance athletic recovery, research must provide a greater understanding of the physiology underpinning performance change and the factors that may contribute to the varied responses currently observed. This review focuses specifically on why some of the current literature may show variability and disparity in the effectiveness of CWI for recovery of athletic performance by examining the body temperature and cardiovascular responses underpinning CWI and how they are related to performance benefits. This review also examines how individual characteristics (such as physique traits), differences in water-immersion protocol (depth, duration, temperature), and exercise type (endurance vs maximal) interact with these mechanisms.

Restricted access

Jessica M. Stephens, Shona L. Halson, Joanna Miller, Gary J. Slater, Dale W. Chapman and Christopher D. Askew

Purpose: To explore the influence of body composition on thermal responses to cold-water immersion (CWI) and the recovery of exercise performance. Methods: Male subjects were stratified into 2 groups: low fat (LF; n = 10) or high fat (HF; n = 10). Subjects completed a high-intensity interval test (HIIT) on a cycle ergometer followed by a 15-min recovery intervention (control [CON] or CWI). Core temperature (Tc), skin temperature, and heart rate were recorded continuously. Performance was assessed at baseline, immediately post-HIIT, and 40 min postrecovery using a 4-min cycling time trial (TT), countermovement jump (CMJ), and isometric midthigh pull (IMTP). Perceptual measures (thermal sensation [TS], total quality of recovery [TQR], soreness, and fatigue) were also assessed. Results: Tc and TS were significantly lower in LF than in HF from 10 min (Tc, LF 36.5°C ± 0.5°C, HF 37.2°C ± 0.6°C; TS, LF 2.3 ± 0.5 arbitrary units [a.u.], HF 3.0 ± 0.7 a.u.) to 40 min (Tc, LF 36.1°C ± 0.6°C, HF 36.8°C ±0.7°C; TS, LF 2.3 ± 0.6 a.u., HF 3.2 ± 0.7 a.u.) after CWI (P < .05). Recovery of TT performance was significantly enhanced after CWI in HF (10.3 ± 6.1%) compared with LF (3.1 ± 5.6%, P = .01); however, no differences were observed between HF (6.9% ±5.7%) and LF (5.4% ± 5.2%) with CON. No significant differences were observed between groups for CMJ, IMTP, TQR, soreness, or fatigue in either condition. Conclusion: Body composition influences the magnitude of Tc change during and after CWI. In addition, CWI enhanced performance recovery in the HF group only. Therefore, body composition should be considered when planning CWI protocols to avoid overcooling and maximize performance recovery.

Restricted access

Jessica M. Stephens, Ken Sharpe, Christopher Gore, Joanna Miller, Gary J. Slater, Nathan Versey, Jeremiah Peiffer, Rob Duffield, Geoffrey M. Minett, David Crampton, Alan Dunne, Christopher D. Askew and Shona L. Halson

Purpose: To examine the effect of postexercise cold-water immersion (CWI) protocols, compared with control (CON), on the magnitude and time course of core temperature (Tc) responses. Methods: Pooled-data analyses were used to examine the Tc responses of 157 subjects from previous postexercise CWI trials in the authors’ laboratories. CWI protocols varied with different combinations of temperature, duration, immersion depth, and mode (continuous vs intermittent). Tc was examined as a double difference (ΔΔTc), calculated as the change in Tc in CWI condition minus the corresponding change in CON. The effect of CWI on ΔΔTc was assessed using separate linear mixed models across 2 time components (component 1, immersion; component 2, postintervention). Results: Intermittent CWI resulted in a mean decrease in ΔΔTc that was 0.25°C (0.10°C) (estimate [SE]) greater than continuous CWI during the immersion component (P = .02). There was a significant effect of CWI temperature during the immersion component (P = .05), where reductions in water temperature of 1°C resulted in decreases in ΔΔTc of 0.03°C (0.01°C). Similarly, the effect of CWI duration was significant during the immersion component (P = .01), where every 1 min of immersion resulted in a decrease in ΔΔTc of 0.02°C (0.01°C). The peak difference in Tc between the CWI and CON interventions during the postimmersion component occurred at 60 min postintervention. Conclusions: Variations in CWI mode, duration, and temperature may have a significant effect on the extent of change in Tc. Careful consideration should be given to determine the optimal amount of core cooling before deciding which combination of protocol factors to prescribe.