Search Results

You are looking at 1 - 2 of 2 items for :

  • Author: Christopher Irwin x
  • Physical Education and Coaching x
Clear All Modify Search
Restricted access

Brenton J. Baguley, Jessica Zilujko, Michael D. Leveritt, Ben Desbrow and Christopher Irwin

The aim of this study was to compare the effect of ad libitum intake of a milk-based liquid meal supplement against a carbohydrate-electrolyte sports drink following exercise induced fluid loss. Seven male participants (age 22.3 ± 3.4 years, height 179.3 ± 7.9 cm, body mass 74.3 ± 7.3 kg; mean ± SD) completed 4 separate trials and lost 1.89 ± 0.44% body mass through moderate intensity exercise in the laboratory. After exercise, participants consumed ad libitum over 2 h a milk-based liquid meal supplement (Sustagen Sport) on two of the trials (S1, S2) or a carbohydrate-electrolyte sports drink (Powerade) on two of the trials (P1, P2), with an additional 1 hr observational period. Measures of body mass, urine output, gastrointestinal tolerance and palatability were collected throughout the recovery period. Participants consumed significantly more Powerade than Sustagen Sport over the 2 h rehydration period (P1 = 2225 ± 888 ml, P2 = 2602 ± 1119 mL, S1 = 1375 ± 711 mL, S2 = 1447 ± 857 ml). Total urine output on both Sustagen trails was significantly lower than the second Powerade trial (P2 = 1447 ± 656 ml, S1 = 153 ± 62 ml, S2 = 182 ± 118 mL; p < .05) and trended toward being lower compared with the first Powerade trial (P1 = 1057 ± 699 ml vs. S1, p = .067 and vs. S2, p = .061). No significant differences in net fluid balance were observed between any of the drinks at the conclusion of each trial (P1 = −0.50 ±0. 46 kg, P2 = −0.40 ± 0.35 kg, S1 = −0.61 ± 0.74 kg, S2 = −0.45 ± 0.58 kg). Gastrointestinal tolerance and beverage palatability measures indicated Powerade to be preferred as a rehydration beverage. Ad libitum milk-based liquid meal supplement results in similar net fluid balance as a carbohydrate-electrolyte sports drink after exercise induced fluid loss.

Restricted access

Liam Sayer, Nidia Rodriguez-Sanchez, Paola Rodriguez-Giustiniani, Christopher Irwin, Danielle McCartney, Gregory R. Cox, Stuart D.R. Galloway and Ben Desbrow

This study investigated the effect of drinking rate on fluid retention of milk and water following exercise-induced dehydration. In Part A, 12 male participants lost 1.9% ± 0.3% body mass through cycle exercise on four occasions. Following exercise, plain water or low-fat milk equal to the volume of sweat lost during exercise was provided. Beverages were ingested over 30 or 90 min, resulting in four beverage treatments: water 30 min, water 90 min, milk 30 min, and milk 90 min. In Part B, 12 participants (nine males and three females) lost 2.0% ± 0.3% body mass through cycle exercise on four occasions. Following exercise, plain water equal to the volume of sweat lost during exercise was provided. Water was ingested over 15 min (DR15), 45 min (DR45), or 90 min (DR90), with either DR15 or DR45 repeated. In both trials, nude body mass, urine volume, urine specific gravity and osmolality, plasma osmolality, and subjective ratings of gastrointestinal symptoms were obtained preexercise and every hour for 3 hr after the onset of drinking. In Part A, no effect of drinking rate was observed on the proportion of fluid retained, but milk retention was greater (p < .01) than water (water 30 min: 57% ± 16%, water 90 min: 60% ± 20%, milk 30 min: 83% ± 6%, and milk 90 min: 85% ± 7%). In Part B, fluid retention was greater in DR90 (57% ± 13%) than DR15 (50% ± 11%, p < .05), but this was within test–retest variation determined from the repeated trials (coefficient of variation: 17%). Within the range of drinking rates investigated the nutrient composition of a beverage has a more pronounced impact on fluid retention than the ingestion rate.