Nutrition assessment is a necessary first step in advising athletes on dietary strategies that include dietary supplementation, and in evaluating the effectiveness of supplementation regimens. Although dietary assessment is the cornerstone component of the nutrition assessment process, it should be performed within the context of a complete assessment that includes collection/evaluation of anthropometric, biochemical, clinical, and environmental data. Collection of dietary intake data can be challenging, with the potential for significant error of validity and reliability, which include inherent errors of the collection methodology, coding of data by dietitians, estimation of nutrient composition using nutrient food tables and/or dietary software programs, and expression of data relative to reference standards including eating guidance systems, macronutrient guidelines for athletes, and recommended dietary allowances. Limitations in methodologies used to complete anthropometric assessment and biochemical analysis also exist, as reference norms for the athlete are not well established and practical and reliable biomarkers are not available for all nutrients. A clinical assessment collected from history information and the nutrition-focused physical exam may help identify overt nutrient deficiencies but may be unremarkable in the well-trained athlete. Assessment of potential food-drug interactions and environmental components further helps make appropriate dietary and supplement recommendations. Overall, the assessment process can help the athlete understand that supplement intake cannot make up for poor food choices and an inadequate diet, while a healthy diet helps ensure maximal benefit from supplementation. Establishment of reference norms specifically for well-trained athletes for the nutrition assessment process is a future research priority.
Search Results
You are looking at 1 - 6 of 6 items for
- Author: D. Enette Larson-Meyer x
- Refine by Access: All Content x
Assessment of Nutrient Status in Athletes and the Need for Supplementation
D. Enette Larson-Meyer, Kathleen Woolf, and Louise Burke
Should We Be Concerned about the Vitamin D Status of Athletes?
Kentz S. Willis, Nikki J. Peterson, and D. Enette Larson-Meyer
A surprisingly high prevalence of vitamin D insufficiency and deficiency has recently been reported worldwide. Although very little is known about vitamin D status among athletes, a few studies suggest that poor vitamin D status is also a problem in athletic populations. It is well recognized that vitamin D is necessary for optimal bone health, but emerging evidence is finding that vitamin D deficiency increases the risk of autoimmune diseases and nonskeletal chronic diseases and can also have a profound effect on human immunity, inflammation, and muscle function (in the elderly). Thus, it is likely that compromised vitamin D status can affect an athlete’s overall health and ability to train (i.e., by affecting bone health, innate immunity, and exercise-related immunity and inflammation). Although further research in this area is needed, it is important that sports nutritionists assess vitamin D (as well as calcium) intake and make appropriate recommendations that will help athletes achieve adequate vitamin D status: serum 25(OH)D of at least 75 or 80 nmol/L. These recommendations can include regular safe sun exposure (twice a week between the hours of 10 a.m. and 3 p.m. on the arms and legs for 5–30 min, depending on season, latitude, and skin pigmentation) or dietary supplementation with 1,000–2,000 IU vitamin D3 per day. Although this is significantly higher than what is currently considered the adequate intake, recent research demonstrates these levels to be safe and possibly necessary to maintain adequate 25(OH)D concentrations.
Dietary Supplements for Health, Adaptation, and Recovery in Athletes
Eric S. Rawson, Mary P. Miles, and D. Enette Larson-Meyer
Some dietary supplements are recommended to athletes based on data that supports improved exercise performance. Other dietary supplements are not ergogenic per se, but may improve health, adaptation to exercise, or recovery from injury, and so could help athletes to train and/or compete more effectively. In this review, we describe several dietary supplements that may improve health, exercise adaptation, or recovery. Creatine monohydrate may improve recovery from and adaptation to intense training, recovery from periods of injury with extreme inactivity, cognitive processing, and reduce severity of or enhance recovery from mild traumatic brain injury (mTBI). Omega 3-fatty acid supplementation may also reduce severity of or enhance recovery from mTBI. Replenishment of vitamin D insufficiency or deficiency will likely improve some aspects of immune, bone, and muscle health. Probiotic supplementation can reduce the incidence, duration, and severity of upper respiratory tract infection, which may indirectly improve training or competitive performance. Preliminary data show that gelatin and/or collagen may improve connective tissue health. Some anti-inflammatory supplements, such as curcumin or tart cherry juice, may reduce inflammation and possibly delayed onset muscle soreness (DOMS). Beta-hydroxy beta-methylbutyrate (HMB) does not consistently increase strength and/or lean mass or reduce markers of muscle damage, but more research on recovery from injury that includes periods of extreme inactivity is needed. Several dietary supplements, including creatine monohydrate, omega 3-fatty acids, vitamin D, probiotics, gelatin, and curcumin/tart cherry juice could help athletes train and/or compete more effectively.
Dietary Practices Adopted by Track-and-Field Athletes: Gluten-Free, Low FODMAP, Vegetarian, and Fasting
Dana M. Lis, Daniel Kings, and D. Enette Larson-Meyer
Some track-and-field athletes implement special diets aiming to improve health and/or performance. An evidence-based approach to any diet is recommended to minimize the risks associated with unnecessary dietary restriction, which may potentially do more harm than good. Four prevalent diets are reviewed in this study: (a) gluten-free; (b) low fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAP); (c) vegetarian; and (d) fasting diets. Recently, gluten-free diets and low FODMAP diets have emerged as novel regimes thought to improve gastrointestinal health and reduce the risk of exercise-associated gastrointestinal symptoms. No direct beneficial outcomes have been associated with avoiding gluten for clinically healthy athletes. Indirectly, a gluten-free diet is associated with other dietary changes, particularly FODMAP reduction, which may improve adverse gastrointestinal symptoms. Vegetarian diets can optimally support athletic demands. However, attention is required to ensure adequate energy and intake of specific nutrients that are less abundant or less well absorbed from plant sources. Finally, fasting is a long-standing concept that is undertaken on a voluntary and obligatory basis. Despite limited supporting research, voluntary fasting is a popular alternative to conventional diets perceptually offering health and body composition benefits. Strict obligatory fasting guidelines likely require the implementation of tailored nutrition strategies to help athletes cope with athletic demands. Overall, a multitude of factors influence adherence to special diets. Even when adherence to a special diet is a necessity, education and advice from an accredited dietitian/nutritionist are recommended for track-and-field athletes to optimize nutrition for health and performance.
Relation Between Vitamin D Status and Body Composition in Collegiate Athletes
Jenna E. Heller, Joi J. Thomas, Bruce W. Hollis, and D. Enette Larson-Meyer
Excess body fat or obesity is known to increase risk of poor vitamin D status in nonathletes but it is not known if this is the case in athletes. Furthermore, the reason for this association is not understood, but is thought to be due to either sequestration of the fat-soluble vitamin within adipose tissue or the effect of volume dilution related to obese individuals’ larger body size. Forty two US college athletes (24 men 18 women, 20.7 ± 1.6 years, 85.0 ± 28.7 kg, BMI = 25.7 ± 6.1 kg/m2) provided blood samples during the fall and underwent measurement of body composition via dual energy X-ray absorptiometry. Serum samples were evaluated for 25-hydroxyvitamin D (25(OH)D) concentration to assess vitamin D status using Diasorin 25(OH)D radioiodine assay. Serum 25(OH)D concentration was negatively associated with height (r = -0.45), total body mass (r = -0.57), BMI (r = -0.57), body fat percentage (r = -0.45), fat mass (r = -0.60) and fat-free mass (r = -0.51) (p < .05). These associations did not change after controlling for sex. In a linear regression mixed model, fat mass (coefficient -0.47, p = .01), but not fat-free mass (coefficient -0.18, p = .32) significantly predicted vitamin D status and explained approximately 36% of the variation in serum 25(OH)D concentration. These results suggest that athletes with a large body size and/or excess adiposity may be at higher risk for vitamin D insufficiency and deficiency. In addition, the significant association between serum 25(OH)D concentration and fat mass in the mixed model, which remained after controlling for sex, is in support of vitamin D sequestration rather than volume dilution as an explanation for such association.
IOC Consensus Statement: Dietary Supplements and the High-Performance Athlete
Ronald J. Maughan, Louise M. Burke, Jiri Dvorak, D. Enette Larson-Meyer, Peter Peeling, Stuart M. Phillips, Eric S. Rawson, Neil P. Walsh, Ina Garthe, Hans Geyer, Romain Meeusen, Luc van Loon, Susan M. Shirreffs, Lawrence L. Spriet, Mark Stuart, Alan Vernec, Kevin Currell, Vidya M. Ali, Richard G.M. Budgett, Arne Ljungqvist, Margo Mountjoy, Yannis Pitsiladis, Torbjørn Soligard, Uğur Erdener, and Lars Engebretsen
Nutrition usually makes a small but potentially valuable contribution to successful performance in elite athletes, and dietary supplements can make a minor contribution to this nutrition program. Nonetheless, supplement use is widespread at all levels of sport. Products described as supplements target different issues, including the management of micronutrient deficiencies, supply of convenient forms of energy and macronutrients, and provision of direct benefits to performance or indirect benefits such as supporting intense training regimens. The appropriate use of some supplements can offer benefits to the athlete, but others may be harmful to the athlete’s health, performance, and/or livelihood and reputation if an anti-doping rule violation results. A complete nutritional assessment should be undertaken before decisions regarding supplement use are made. Supplements claiming to directly or indirectly enhance performance are typically the largest group of products marketed to athletes, but only a few (including caffeine, creatine, specific buffering agents and nitrate) have good evidence of benefits. However, responses are affected by the scenario of use and may vary widely between individuals because of factors that include genetics, the microbiome, and habitual diet. Supplements intended to enhance performance should be thoroughly trialed in training or simulated competition before implementation in competition. Inadvertent ingestion of substances prohibited under the anti-doping codes that govern elite sport is a known risk of taking some supplements. Protection of the athlete’s health and awareness of the potential for harm must be paramount, and expert professional opinion and assistance is strongly advised before embarking on supplement use.