Search Results

You are looking at 1 - 3 of 3 items for :

  • Author: Duncan French x
  • Sport and Exercise Science/Kinesiology x
Clear All Modify Search
Restricted access

Philip R. Hayes, Kjell van Paridon, Duncan N. French, Kevin Thomas and Dan A. Gordon

Purpose:

The aim of this study was to develop a laboratory-based treadmill simulation of the on-course physiological demands of an 18-hole round of golf and to identify the underlying physiological responses.

Methods:

Eight amateur golfers completed a round of golf during which heart rate (HR), steps taken, and global positioning system (GPS) data were assessed. The GPS data were used to create a simulated discontinuous round on a treadmill. Steps taken and HR were recorded during the simulated round.

Results:

During the on-course round, players covered a mean (±SD) of 8,251 ± 450 m, taking 12,766 ± 1,530 steps. The mean exercise intensity during the on-course round was 31.4 ± 9.3% of age-predicted heart rate reserve (%HRR) or 55.6 ± 4.4% of age-predicted maximum HR (%HRmax). There were no significant differences between the simulated round and the on-course round for %HRR (P = .537) or %HR max (P = .561) over the entire round or for each individual hole. Furthermore, there were no significant differences between the two rounds for steps taken. Typical error values for steps taken, HR, %HRmax, and %HRR were 1,083 steps, ±7.6 b·min-1, ±4.5%, and ±8.1%, respectively.

Conclusion:

Overall, the simulated round of golf successfully recreated the demands of an on-course round. This simulated round could be used as a research tool to assess the extent of fatigue during a round of golf or the impact of various interventions on golfers.

Restricted access

Thomas I. Gee, Duncan N. French, Karl C. Gibbon and Kevin G. Thompson

Purpose:

This study investigated the pacing strategy adopted and the consistency of performance and related physiological parameters across three 2000-m rowing-ergometer tests.

Methods:

Fourteen male well-trained rowers took part in the study. Each participant performed three 2000-m rowing-ergometer tests interspersed by 3–7 d. Throughout the trials, respiratory exchange and heart rate were recorded and power output and stroke rate were analyzed over each 500 m of the test. At the completion of the trial, assessments of blood lactate and rating of perceived exertion were measured.

Results:

Ergometer performance was unchanged across the 3 trials; however, pacing strategy changed from trial 1, which featured a higher starting power output and more progressive decrease in power, to trials 2 and 3, which were characterized by a more conservative start and an end spurt with increased power output during the final 500 m. Mean typical error (TE; %) across the three 2000-m trials was 2.4%, and variability was low to moderate for all assessed physiological variables (TE range = 1.4−5.1%) with the exception of peak lactate (TE = 11.5%).

Conclusions:

Performance and physiological responses during 2000-m rowing ergometry were found to be consistent over 3 trials. The variations observed in pacing strategy between trial 1 and trials 2 and 3 suggest that a habituation trial is required before an intervention study and that participants move from a positive to a reverse-J-shaped strategy, which may partly explain conflicting reports in the pacing strategy exhibited during 2000-m rowing-ergometer trials.

Restricted access

Thomas W. Jones, Ian H. Walshe, David L. Hamilton, Glyn Howatson, Mark Russell, Oliver J. Price, Alan St Clair Gibson and Duncan N. French

Purpose:

To compare anabolic signaling responses to differing sequences of concurrent strength and endurance training in a fed state.

Methods:

Eighteen resistance-trained men were randomly assigned to the following experimental conditions: strength training (ST), strength followed by endurance training (ST-END), or endurance followed by strength training (END-ST). Muscle tissue samples were taken from the vastus lateralis before each exercise protocol, on cessation of exercise, and 1 h after cessation of strength training. Tissue was analyzed for total and phosphorylated (p-) signaling proteins linked to the mTOR and AMPK networks.

Results:

Strength-training performance was similar between ST, ST-END, and END-ST. p-S6k1 was elevated from baseline 1 h posttraining in ST and ST-END (both P < .05). p-4E-BP1 was significantly lower than baseline post-ST (P = .01), whereas at 1 h postexercise in the ST-END condition p-4E-BP1 was significantly greater than postexercise (P = .04). p-ACC was elevated from baseline both postexercise and 1 h postexercise (both P < .05) in the END-ST condition. AMPK, mTOR, p38, PKB, and eEF2 responded similarly to ST, ST-END, and END-ST. Signaling responses to ST, ST-END, and END were largely similar. As such it cannot be ascertained which sequence of concurrent strength and endurance training is most favorable in promoting anabolic signaling.

Conclusions:

In the case of the current study an acute bout of concurrent training of differing sequences elicited similar responses of the AMPK and mTOR networks.