Search Results

You are looking at 1 - 3 of 3 items for :

  • Author: Francesco Campa x
  • Sport and Exercise Science/Kinesiology x
Clear All Modify Search
Restricted access

Francesco Campa and Stefania Toselli

Purpose: To establish a specific player profile on body-composition parameters and to provide a data set of bioelectric impedances values for male volleyball players. Methods: The study included 201 athletes (age 26.1 [5.4] y, height 191.9 [9.7] cm, weight 86.8 [10.8] kg) registered in the Italian volleyball divisions. The athletes were divided into 3 groups: The elite group comprised 75 players participating in the 1st (Super Lega) division, the subelite group included 65 athletes performing in the 2nd (Serie A2) division, and the low-level group included 61 players participating in the 3rd (Serie B) division. Bioelectric impedance, body weight, and height of the athletes were measured in the second half of the competitive season. In addition, bioelectrical impedance vector analysis was performed. Results: The elite group showed a greater amount of fat-free mass (FFM) and total body water (TBW) and a lower fat mass (FM) than the subelite group (P < .05). In addition, the elite players were taller and heavier and had a higher FFM, FM, TBW, and body cellular mass than the low-level athletes (P < .05). Finally, the mean impedance vectors of the elite group significantly differed from those measured in the normal population and in the other 2 groups (P < .05). Conclusions: This study provides an original data set of body-composition and bioelectric impedance reference values of elite male volleyball players. The results might be useful for interpretation of individual bioimpedance vectors and for defining target regions for volleyball players.

Restricted access

Francesco Campa, Hannes Gatterer, Henry Lukaski and Stefania Toselli

Purpose: The exercise-induced increase in skin and body temperature, cutaneous blood flow, and electrolyte accumulation on the skin affects the validity of bioimpedance analysis to assess postexercise changes in hydration. This study aimed to assess the influence of a 10-min cold (22°C) shower on the time course of impedance measurements after controlled exercise. Methods: In total, 10 male athletes (age 26.2 [4.1] y and body mass index 23.9 [1.7] kg/m2) were tested on 2 different days. During both trials, athletes ran for 30 min on a treadmill in a room at 23°C. In a randomized crossover trial, the participants underwent a 10-min cold shower on the trial occasion and did not shower in the control trial. Bioimpedance analysis variables were measured before running (ie, baseline [T0]), immediately after exercising (T1), and 20 (T2), 40 (T3), and 60 min (T4) after the exercise. The shower was performed after T1 in the shower trial. Results: Body weight decreased similarly in both trials (−0.4% [0.1%], P < .001; −0.4% [0.1%], P < .001). Resistance and vector length returned to baseline at T2 in the shower trial, whereas baseline values were achieved at T3 in the control trial (P > .05). In the control trial, reactance remained at a lower level for the entire testing period (38.1 [6.9] vs 37.3 [6.7], P < .001). Forehead skin temperature returned to baseline values at T2 with shower, whereas it was still high at T4 without shower (P < .001). Conclusions: The present data show that a 10-min cold shower enables the stabilization of bioimpedance analysis measurements within 20 min after exercise, which might facilitate the assessment of hydration change after exercise.

Restricted access

Francesco Campa, Catarina N. Matias, Elisabetta Marini, Steven B. Heymsfield, Stefania Toselli, Luís B. Sardinha and Analiza M. Silva

Purpose: To analyze the association between body fluid changes evaluated by bioelectrical impedance vector analysis and dilution techniques over a competitive season in athletes. Methods: A total of 58 athletes of both sexes (men: age 18.7 [4.0] y and women: age 19.2 [6.0] y) engaging in different sports were evaluated at the beginning (pre) and 6 months after (post) the competitive season. Deuterium dilution and bromide dilution were used as the criterion methods to assess total body water (TBW) and extracellular water (ECW), respectively; intracellular water (ICW) was calculated as TBW–ECW. Bioelectrical resistance and reactance were obtained with a phase-sensitive 50-kHz bioelectrical impedance analysis device; bioelectrical impedance vector analysis was applied. Dual-energy X-ray absorptiometry was used to assess fat mass and fat-free mass. The athletes were empirically classified considering TBW change (pre–post, increase or decrease) according to sex. Results: Significant mean vector displacements in the postgroups were observed in both sexes. Specifically, reductions in vector length (Z/H) were associated with increases in TBW and ICW (r = −.718, P < .01; r = −.630, P < .01, respectively) and decreases in ECW:ICW ratio (r = .344, P < .05), even after adjusting for age, height, and sex. Phase-angle variations were positively associated with TBW and ICW (r = .458, P < .01; r = .564, P < .01, respectively) and negatively associated with ECW:ICW (r = −.436, P < .01). Phase angle significantly increased in all the postgroups except in women in whom TBW decreased. Conclusions: The results suggest that bioelectrical impedance vector analysis is a suitable method to obtain a qualitative indication of body fluid changes during a competitive season in athletes.