Search Results

You are looking at 1 - 2 of 2 items for :

  • Author: Iker Muñoz x
  • Physical Education and Coaching x
Clear All Modify Search
Restricted access

Iker Muñoz, Roberto Cejuela, Stephen Seiler, Eneko Larumbe and Jonathan Esteve-Lanao

Purpose:

To describe training loads during an Ironman training program based on intensity zones and observe training–performance relationships.

Methods:

Nine triathletes completed a program with the same periodization model aiming at participation in the same Ironman event. Before and during the study, subjects performed ramp-protocol tests, running, and cycling to determine aerobic (AeT) and anaerobic thresholds (AnT) through gas-exchange analysis. For swimming, subjects performed a graded lactate test to determine AeT and AnT. Training was subsequently controlled by heart rate (HR) during each training session over 18 wk. Training and the competition were both quantified based on the cumulative time spent in 3 intensity zones: zone 1 (low intensity; <AeT), zone 2 (moderate intensity; between AeT and AnT), and zone 3 (high intensity; >AnT).

Results:

Most of training time was spent in zone 1 (68% ± 14%), whereas the Ironman competition was primarily performed in zone 2 (59% ± 22%). Significant inverse correlations were found between both total training time and training time in zone 1 vs performance time in competition (r = –.69 and –.92, respectively). In contrast, there was a moderate positive correlation between total training time in zone 2 and performance time in competition (r = .53) and a strong positive correlation between percentage of total training time in zone 2 and performance time in competition (r = .94).

Conclusions:

While athletes perform with HR mainly in zone 2, better performances are associated with more training time spent in zone 1. A high amount of cycling training in zone 2 may contribute to poorer overall performance.

Restricted access

Iker Muñoz, Stephen Seiler, Javier Bautista, Javier España, Eneko Larumbe and Jonathan Esteve-Lanao

Purpose:

To quantify the impact of training-intensity distribution on 10K performance in recreational athletes.

Methods:

30 endurance runners were randomly assigned to a training program emphasizing low-intensity, sub-ventilatory-threshold (VT), polarized endurance-training distribution (PET) or a moderately high-intensity (between-thresholds) endurance-training program (BThET). Before the study, the subjects performed a maximal exercise test to determine VT and respiratory-compensation threshold (RCT), which allowed training to be controlled based on heart rate during each training session over the 10-wk intervention period. Subjects performed a 10-km race on the same course before and after the intervention period. Training was quantified based on the cumulative time spent in 3 intensity zones: zone 1 (low intensity, <VT), zone 2 (moderate intensity, between VT and RCT), and zone 3 (high intensity, >RCT). The contribution of total training time in each zone was controlled to have more low-intensity training in PET (±77/3/20), whereas for BThET the distribution was higher in zone 2 and lower in zone 1 (±46/35/19).

Results:

Both groups significantly improved their 10K time (39min18s ± 4min54s vs 37min19s ± 4min42s, P < .0001 for PET; 39min24s ± 3min54s vs 38min0s ± 4min24s, P < .001 for BThET). Improvements were 5.0% vs 3.6%, ~41 s difference at post-training-intervention. This difference was not significant. However, a subset analysis comparing the 12 runners who actually performed the most PET (n = 6) and BThET (n = 16) distributions showed greater improvement in PET by 1.29 standardized Cohen effect-size units (90% CI 0.31–2.27, P = .038).

Conclusions:

Polarized training can stimulate greater training effects than between-thresholds training in recreational runners.