Search Results

You are looking at 1 - 2 of 2 items for :

  • Author: Marcelo Papoti x
  • Physical Education and Coaching x
Clear All Modify Search
Restricted access

Alessandro Moura Zagatto, Jorge Vieira de Mello Leite, Marcelo Papoti and Ralph Beneke


To test the hypotheses that the metabolic profile of table tennis is dominantly aerobic, anaerobic energy is related to the accumulated duration and intensity of rallies, and activity and metabolic profile are interrelated with the individual fitness profile determined via table tennis–specific tests.


Eleven male experienced table tennis players (22 ± 3 y, 77.6 ± 18.9 kg, 177.1 ± 8.1 cm) underwent 2 simulated table tennis matches to analyze aerobic (WOXID) energy, anaerobic glycolytic (WBLC) energy, and phosphocreatine breakdown (WPCr); a table tennis–specific graded exercise test to measure ventilatory threshold and peak oxygen uptake; and an exhaustive supramaximal table tennis effort to determine maximal accumulated deficit of oxygen.


WOXID, WBLC, and WPCr corresponded to 96.5% ± 1.7%, 1.0% ± 0.7%, and 2.5% ± 1.4%, respectively. WOXID was interrelated with rally duration (r = .81) and number of shots per rally (r = .77), whereas match intensity was correlated with WPCr (r = .62) and maximal accumulated oxygen deficit (r = .58).


The metabolic profile of table tennis is predominantly aerobic and interrelated with the individual fitness profile determined via table tennis–specific tests. Table tennis–specific ventilatory threshold determines the average oxygen uptake and overall WOXID, whereas table tennis–specific maximal accumulated oxygen deficit indicates the ability to use and sustain slightly higher blood lactate concentration and WBLC during the match.

Restricted access

Gabriel Motta Pinheiro Brisola, Fabio Milioni, Marcelo Papoti and Alessandro Moura Zagatto

In water polo, several high-intensity efforts are performed, leading to the fatigue process due to accumulation of hydrogen ions, and thus β-alanine supplementation could be an efficient strategy to increase the intramuscular acid buffer.


To investigate whether 4 wk of β-alanine supplementation enhances parameters related to water polo performance.


Twenty-two highly trained male water polo players of national level were randomly assigned to receive 28 d of either β-alanine or a placebo (4.8 g/d of the supplement in the first 10 d and 6.4 g/d in the final 18 d). The participants performed 30-s maximal tethered swimming (30TS), 200-m swimming (P200m), and 30-s crossbar jumps (30CJ) before and after the supplementation period.


The β-alanine group presented significant increases in 30TS for mean force (P = .04; Δ = 30.5% ± 40.4%) and integral of force (P = .05; Δ = 28.0% ± 38.0%), as well as P200m (P = .05; Δ = –2.2% ± 2.6%), while the placebo group did not significantly differ for mean force (P = .13; Δ = 24.1% ± 33.7%), integral of force (P = .12; Δ = 24.3% ± 35.1%), or P200m (P = .10; Δ = –1.6% ± 3.8%). However, there was no significant group effect for any variable, and the magnitude-based-inference analysis showed unclear outcomes between groups (Cohen d ± 95%CL mean force = 0.16 ± 0.83, integral of force = 0.12 ± 0.84, and P200m = 0.05 ± 0.30). For 30CJ the results were similar, with improvements in both groups (placebo, Δ = 14.9% ± 14.1%; β-alanine, Δ = 16.9% ± 18.5%) but with no significant interaction effect between groups and an unclear effect (0.14 ± 0.75).


Four weeks of β-alanine supplementation does not substantially improve performance of 30TS, P200m, or 30CJ in highly trained water polo athletes compared with a control group.