Search Results

You are looking at 1 - 7 of 7 items for :

  • Author: Nathan A. Johnson x
  • Physical Education and Coaching x
Clear All Modify Search
Restricted access

Catriona A. Burdon, Matthew W. Hoon, Nathan A. Johnson, Phillip G. Chapman and Helen T. O’Connor

Purpose:

The purpose of this study was to establish whether sensory factors associated with cold-beverage ingestion exert an ergogenic effect on endurance performance independent of thermoregulatory or cardiovascular factors.

Methods:

Ten males performed three trials involving 90 min of steady state cycling (SS; 62% VO2max) in the heat (32.1 ± 0.9 °C, 40 ± 2.4% relative humidity) followed by a 4 kJ/kg body mass time trial (TT). During SS, participants consumed an identical volume (260 ± 38g) of sports beverage (7.4% carbohydrate) every 15 min as either ice slushy (–1 °C; ICE), thermoneutral liquid (37 °C; CON), or thermoneutral liquid consumption with expectorated ice slushy mouthwash (WASH).

Results:

Rectal temperature, hydration status, heart rate, and skin blood flow were not different between trials. Gastrointestinal (pill) temperature was lower in ICE (35.6 ± 2.7 °C) versus CON (37.4 ± 0.7 °C, p = .05). Heat storage tended to be lower with ICE during SS (14.7 ± 8.4W.m−2, p = .08) and higher during TT (68.9 ± 38.6W.m−2, p = .03) compared with CON (22.1 ± 6.6 and 31.4 ± 27.6W.m−2). ICE tended to lower the rating of perceived exertion (RPE, 12.9 ± 0.6, p = .05) and improve thermal comfort (TC, 4.5 ± 0.2; p = .01) vs. CON (13.8 ± 1.0 and 5.2 ± 0.2 respectively). WASH RPE (13.0 ± 0.8) and TC (4.8 ± 0.2) tended to be lower versus CON (p = .07 and p = .09 respectively). ICE improved performance (18:28 ± 1:03) compared with CON (20:24 ± 1:46) but not WASH (19:45 ± 1:43).

Conclusion:

Improved performance with ICE ingestion likely resulted from the creation of a gastrointestinal heat sink, reducing SS heat storage. Although the benefits of cold-beverage consumption are more potent when there is ingestion, improved RPE, TC, and meaningful performance improvement with WASH supports an independent sensory effect of presenting a cold stimulus to the mouth.

Restricted access

Catriona A. Burdon, Nathan A. Johnson, Phillip G. Chapman and Helen T. O’Connor

Beverage palatability is known to influence fluid consumption during exercise and may positively influence hydration status and help prevent fatigue, heat illness, and decreased performance.

Purpose:

The aims of this review were to evaluate the effect of beverage temperature on fluid intake during exercise and investigate the influence of beverage temperature on palatability.

Methods:

Citations from multiple databases were searched from the earliest record to November 2010 using the terms beverage, fluid, or water and palatability, preference, feeding, and drinking behavior and temperature. Included studies (N = 14) needed to use adult (≥18 yr) human participants, have beverage temperatures ≤50 °C, and measure consumption during exercise and/or palatability.

Results:

All studies reporting palatability (n = 10) indicated that cold (0–10 °C) or cool (10–22 °C) beverages were preferred to warmer ones (control, ≥22 °C). A meta-analysis on studies reporting fluid consumption (n = 5) revealed that participants consumed ~50% (effect size = 1.4, 0.75–2.04, 95% CI) more cold/cool beverages than control during exercise. Subanalysis of studies assessing hydration status (n = 4) with consumption of cool/cold vs. warm beverages demonstrated that dehydration during exercise was reduced by 1.3% of body weight (1.6–0.9%, 95% CI; p < .001).

Conclusion:

Cool beverage temperatures (<22 °C) significantly increased fluid palatability, fluid consumption, and hydration during exercise vs. control (≥22 °C).

Restricted access

Matthew W. Hoon, Nathan A. Johnson, Phillip G. Chapman and Louise M. Burke

The purpose of this review was to examine the effect of nitrate supplementation on exercise performance by systematic review and meta-analysis of controlled human studies. A search of four electronic databases and cross-referencing found 17 studies investigating the effect of inorganic nitrate supplementation on exercise performance that met the inclusion criteria. Beetroot juice and sodium nitrate were the most common supplements, with doses ranging from 300 to 600 mg nitrate and prescribed in a manner ranging from a single bolus to 15 days of regular ingestion. Pooled analysis showed a significant moderate benefit (ES = 0.79, 95% CI: 0.23–1.35) of nitrate supplementation on performance for time to exhaustion tests (p = .006). There was a small but insignificant beneficial effect on performance for time trials (ES = 0.11, 95% CI: –0.16–0.37) and graded exercise tests (ES = 0.26, 95% CI: –0.10–0.62). Qualitative analysis suggested that performance benefits are more often observed in inactive to recreationally active individuals and when a chronic loading of nitrate over several days is undertaken. Overall, these results suggest that nitrate supplementation is associated with a moderate improvement in constant load time to exhaustion tasks. Despite not reaching statistical significance, the small positive effect on time trial or graded exercise performance may be meaningful in an elite sport context. More data are required to clarify the effect of nitrate supplementation on exercise performance and to elucidate the optimal way to implement supplementation.

Restricted access

Amy Warren, Erin J. Howden, Andrew D. Williams, James W. Fell and Nathan A. Johnson

Postexercise fat oxidation may be important for exercise prescription aimed at optimizing fat loss. The authors examined the effects of exercise intensity, duration, and modality on postexercise oxygen consumption (VO2) and substrate selection/respiratory-exchange ratio (RER) in healthy individuals. Three experiments (n = 7 for each) compared (a) short- (SD) vs. long-duration (LD) ergometer cycling exercise (30 min vs. 90 min) matched for intensity, (b) low- (LI) vs. high-intensity (HI) cycling (50% vs. 85% of VO2max) matched for energy expenditure, and (c) continuous (CON) vs. interval (INT) cycling matched for energy expenditure and mean intensity. All experiments were administered by crossover design. Altering exercise duration did not affect postexercise VO2 or RER kinetics (p > .05). However, RER was lower and fat oxidation was higher during the postexercise period in LD vs. SD (p < .05). HI vs. LI resulted in a significant increase in total postexercise energy expenditure and fat oxidation (p < .01). Altering exercise modality (CON vs. INT) did not affect postexercise VO2, RER, or fat oxidation (p > .05). These results demonstrate that postexercise energy expenditure and fat oxidation can be augmented by increasing exercise intensity, but these benefits cannot be exploited by undertaking interval exercise (1:2-min work:recovery ratio) when total energy expenditure, duration, and mean intensity remain unchanged. In spite of the apparent benefit of these strategies, the amount of fat oxidized after exercise may be inconsequential compared with that oxidized during the exercise bout.

Restricted access

Catriona A. Burdon, Nathan A. Johnson, Phillip G. Chapman, Ahmad Munir Che Muhamed and Helen T. O’Connor

Purpose:

The aim of this study was to measure the effect of environmental conditions and aid-station beverage-cooling practices on the temperature of competitor beverages.

Methods:

Environmental and beverage temperatures were measured at three cycling and two run course aid stations at the 2010 Langkawi, Malaysia (MA), and Port Macquarie, Australia (AU), Ironman triathlon events. To measure the specific effect of radiant temperature, additional fluid-filled (600 ml) drink bottles (n = 12) were cooled overnight (C) and then placed in direct sun (n = 6) or shade (n = 6) near to a cycle aid station at AU.

Results:

During both events, beverage temperature increased over time (p < .05) as environmental conditions, particularly radiant temperature increased (p < .05). Mean beverage temperature ranged between 14–26°C and during both events was above the palatable range (15–22°C) for extended periods. At AU, bottles placed in direct sunlight heated faster (6.9 ± 2.3 °C·h−1) than those in the shade (4.8 ± 1.1°C·h−1, p = .05).

Conclusion:

Simple changes to Ironman aidstation practices, including shade and chilling beverages with ice, result in the provision of cooler beverages. Future studies should investigate whether provision of cool beverages at prolonged endurance events influences heat-illness incidence, beverage-consumption patterns, and competitor performance.

Restricted access

Matthew W. Hoon, Andrew M. Jones, Nathan A. Johnson, Jamie R. Blackwell, Elizabeth M. Broad, Bronwen Lundy, Anthony J. Rice and Louise M. Burke

Context:

Beetroot juice is a naturally rich source of inorganic nitrate (NO3 ), a compound hypothesized to enhance endurance performance by improving exercise efficiency.

Purpose:

To investigate the effect of different doses of beetroot juice on 2000-m ergometer-rowing performance in highly trained athletes.

Methods:

Ten highly trained male rowers volunteered to participate in a placebo-controlled, double-blinded crossover study. Two hours before undertaking a 2000-m rowing-ergometer test, subjects consumed beetroot juice containing 0 mmol (placebo), 4.2 mmol (SINGLE), or 8.4 mmol (DOUBLE) NO3 . Blood samples were taken before supplement ingestion and immediately before the rowing test for analysis of plasma [NO3 ] and [nitrite (NO2 )].

Results:

The SINGLE dose demonstrated a trivial effect on time to complete 2000 m compared with placebo (mean difference: 0.2 ± 2.5 s). A possibly beneficial effect was found with DOUBLE compared with SINGLE (mean difference –1.8 ± 2.1 s) and with placebo (–1.6 ± 1.6 s). Plasma [NO2 ] and [NO3 ] demonstrated a dose-response effect, with greater amounts of ingested nitrate leading to substantially higher concentrations (DOUBLE > SINGLE > placebo). There was a moderate but insignificant correlation (r = –.593, P = .055) between change in plasma [NO2 ] and performance time.

Conclusion:

Compared with nitratedepleted beetroot juice, a high (8.4 mmol NO3 ) but not moderate (4.2 mmol NO3 ) dose of NO3 in beetroot juice, consumed 2 h before exercise, may improve 2000-m rowing performance in highly trained athletes.

Restricted access

Colin R. Carriker, Christine M. Mermier, Trisha A. VanDusseldorp, Kelly E. Johnson, Nicholas M. Beltz, Roger A. Vaughan, James J. McCormick, Nathan H. Cole, Christopher C. Witt and Ann L. Gibson

Reduced partial pressure of oxygen impairs exercise performance at altitude. Acute nitrate supplementation, at sea level, may reduce oxygen cost during submaximal exercise in hypobaric hypoxia. Therefore, we investigated the metabolic response during exercise at altitude following acute nitrate consumption. Ten well-trained (61.0 ± 7.4 ml/kg/min) males (age 28 ± 7 yr) completed 3 experimental trials (T1, T2, T3). T1 included baseline demographics, a maximal aerobic capacity test (VO2max) and five submaximal intensity cycling determination bouts at an elevation of 1600 m. A 4-day dietary washout, minimizing consumption of nitrate-rich foods, preceded T2 and T3. In a randomized, double-blind, placebo-controlled, crossover fashion, subjects consumed either a nitrate-depleted beetroot juice (PL) or ~12.8 mmol nitrate rich (NR) beverage 2.5 hr before T2 and T3. Exercise at 3500 m (T2 and T3) via hypobaric hypoxia consisted of a 5-min warm-up (25% of normobaric (VO2max) and four 5-min cycling bouts (40, 50, 60, 70% of normobaric VO2max) each separated by a 4-min rest period. Cycling RPM and watts for each submaximal bout during T2 and T3 were determined during T1. Preexercise plasma nitrite was elevated following NR consumption compared with PL (1.4 ± 1.2 and 0.7 ± 0.3 uM respectively; p < .05). There was no difference in oxygen consumption (−0.5 ± 1.8, 0.1 ± 1.7, 0.7 ± 2.1, and 1.0 ± 3.0 ml/kg/min) at any intensity (40, 50, 60, 70% of VO2max), respectively) between NR and PL. Further, respiratory exchange ratio, oxygen saturation, heart rate and rating of perceived exertion were not different at any submaximal intensity between NR and PL either. Blood lactate, however, was reduced following NR consumption compared with PL at 40 and 60% of VO2max (p < .0.05). Our findings suggest that acute nitrate supplementation before exercise at 3500 m does not reduce oxygen cost but may reduce blood lactate accumulation at lower intensity workloads.