Search Results

You are looking at 1 - 3 of 3 items for :

  • Author: Paola Rodriguez-Giustiniani x
  • Physical Education and Coaching x
Clear All Modify Search
Restricted access

Paola Rodriguez-Giustiniani and Stuart D.R. Galloway

The present study examined the impact of hormonal differences between late follicular (LF) and midluteal (ML) phases on restoration of fluid balance following dehydration. Ten eumenorrheic female participants were dehydrated by 2% of their body mass through overnight fluid restriction followed by exercise-heat stress. Trials were undertaken during the LF (between Days 10 and 13 of the menstrual cycle) and ML phases (between Days 18 and 23 of the menstrual cycle) with one phase repeated to assess reliability of observations. Following dehydration, participants ingested a volume equivalent to 100% of mass loss of a commercially available sports drink in four equal volumes over 30 min. Mean serum values for steroid hormones during the ML (estradiol [E2]: 92 ± 11 pg/ml, progesterone: 19 ± 4 ng/ml) and LF (estradiol [E2]: 232 ± 64 pg/ml, progesterone: 3 ± 2 ng/ml) were significantly different between phases. Urine tests confirmed no luteinizing hormone surge evident during LF trials. There was no effect of menstrual cycle phase on cumulative urine volume during the 3-hr rehydration period (ML: 630 [197–935] ml, LF: 649 [180–845] ml) with percentage of fluid retained being 47% (33–85)% on ML and 46% (37–89)% on LF (p = .29). There was no association between the progesterone:estradiol ratio and fluid retained in either phase. Net fluid balance, urine osmolality, and thirst intensity were not different between phases. No differences in sodium (ML: −61 [−36 to −131] mmol, LF: −73 [−5 to −118] mmol; p = .45) or potassium (ML: −36 [−11 to −80] mmol, LF: −30 [−19 to −89] mmol; p = .96) balance were observed. Fluid replacement after dehydration does not appear to be affected by normal hormonal fluctuations during the menstrual cycle in eumenorrheic young women.

Restricted access

Paola Rodriguez-Giustiniani, Ian Rollo, Oliver C. Witard and Stuart D. R. Galloway

This study investigated the influence of ingesting a 12% carbohydrate plus electrolyte (CHO-E) solution providing 60 g of carbohydrate before each half of a 90-min soccer match simulation (SMS) protocol on skill performance, sprint speed, and high-intensity running capacity. Eighteen elite academy (age: 18 ± 2 years) soccer players ingested two 250-ml doses (pre-exercise and at halftime) of a 12% CHO-E solution or electrolyte placebo administered in a double-blind randomized cross-over design. During an indoor (artificial grass pitch) SMS, dribbling, passing, and sprint performance were assessed, and blood was drawn for glucose and lactate analysis. High-intensity running capacity was assessed following the SMS. Dribbling speed/accuracy and sprint speed remained unchanged throughout the SMS. Conversely, passing accuracy for both dominant (mean percentage difference [95% confidence interval, CI]: 9 [3, 15]) and nondominant (mean percentage difference [95% CI]: 13 [6, 20]) feet was better maintained during the SMS on CHO-E (p < .05), with passing speed better maintained in the nondominant foot (mean percentage difference [95% CI]: 5.3 [0.7, 9.9], p = .032). High-intensity running capacity was greater in CHO-E versus placebo (mean percentage difference [95% CI]: 13 [6, 20], p = .010). Capillary blood glucose concentration was higher in CHO-E than placebo at halftime (CHO-E: 5.8 ± 0.5 mM vs. placebo: 4.1 ± 0.4 mM, p = .001) and following the high-intensity running capacity test (CHO-E: 4.9 ± 0.4 mM vs. placebo: 4.3 ± 0.4 mM, p = .001). Ingesting a 12% CHO-E solution before each half of a match can aid in the maintenance of soccer-specific skill performance, particularly on the nondominant foot, and improves subsequent high-intensity running capacity.

Restricted access

Liam Sayer, Nidia Rodriguez-Sanchez, Paola Rodriguez-Giustiniani, Christopher Irwin, Danielle McCartney, Gregory R. Cox, Stuart D.R. Galloway and Ben Desbrow

This study investigated the effect of drinking rate on fluid retention of milk and water following exercise-induced dehydration. In Part A, 12 male participants lost 1.9% ± 0.3% body mass through cycle exercise on four occasions. Following exercise, plain water or low-fat milk equal to the volume of sweat lost during exercise was provided. Beverages were ingested over 30 or 90 min, resulting in four beverage treatments: water 30 min, water 90 min, milk 30 min, and milk 90 min. In Part B, 12 participants (nine males and three females) lost 2.0% ± 0.3% body mass through cycle exercise on four occasions. Following exercise, plain water equal to the volume of sweat lost during exercise was provided. Water was ingested over 15 min (DR15), 45 min (DR45), or 90 min (DR90), with either DR15 or DR45 repeated. In both trials, nude body mass, urine volume, urine specific gravity and osmolality, plasma osmolality, and subjective ratings of gastrointestinal symptoms were obtained preexercise and every hour for 3 hr after the onset of drinking. In Part A, no effect of drinking rate was observed on the proportion of fluid retained, but milk retention was greater (p < .01) than water (water 30 min: 57% ± 16%, water 90 min: 60% ± 20%, milk 30 min: 83% ± 6%, and milk 90 min: 85% ± 7%). In Part B, fluid retention was greater in DR90 (57% ± 13%) than DR15 (50% ± 11%, p < .05), but this was within test–retest variation determined from the repeated trials (coefficient of variation: 17%). Within the range of drinking rates investigated the nutrient composition of a beverage has a more pronounced impact on fluid retention than the ingestion rate.