Search Results

You are looking at 1 - 3 of 3 items for :

  • Author: Paul R. Hibbing x
  • Psychology and Behavior in Sport/Exercise x
Clear All Modify Search
Restricted access

Scott E. Crouter, Paul R. Hibbing and Samuel R. LaMunion

The purpose of this study was to conduct a comprehensive evaluation of the ActiGraph GT3X+ (AG) and activPAL (AP) for assessing time spent in sedentary behaviors (SB) in youth using structured and free-living activities. Forty-four participants (M age, 12.7±0.8 yrs) completed up to eight structured activities and approximately 2 hrs of free-living activity while wearing an AG (right hip) and AP (right thigh). A Cosmed K4b2 was used for measured energy expenditure (METy; activity VO2 ÷ resting VO2). Direct observation was used during the structured activities. SB time was estimated using the inclinometer function of the AP and AG, and count thresholds with AG (<75 vector magnitude [VM] counts/10-s; <25 vertical axis [VA] counts/10-s; and <50, 100, 150, and 200 VA counts/min). For the structured activities, the AG inclinometer and AP correctly classified supine rest about 45% of the time, seated activities 54.6% and 65.1% of the time, respectively, and walking and running >96% of the time. For the free-living measurement, the VA <25 counts/10-s had the lowest RMSE (20.6 min), while the VM <75 counts/10-s had the lowest MAPE (69.2%). The AG inclinometer was within 0.2 minutes of measured time, but had the highest MAPE (107.1%). The AP was within 1.6 minutes of measured time, but had the highest RMSE (28.5 minutes). Compared to measured SB time, the VA <25 counts/10-s and VM <75 counts/10-s provided the most precise estimates of SB during free-living activity. Further refinement is needed to improve the AP and AG posture estimates.

Restricted access

Lindsay P. Toth, Susan Park, Whitney L. Pittman, Damla Sarisaltik, Paul R. Hibbing, Alvin L. Morton, Cary M. Springer, Scott E. Crouter and David R. Bassett

Purpose: To examine the effect of brief, intermittent stepping bouts on step counts from 10 physical activity monitors (PAMs). Methods: Adults (N = 21; M ± SD, 26 ± 9.0 yr) wore four PAMs on the wrist (Garmin Vivofit 2, Fitbit Charge, Withings Pulse Ox, and ActiGraph wGT3X-BT [AG]), four on the hip (Yamax Digi-Walker SW-200 [YX], Fitbit Zip, Omron HJ-322U, and AG), and two on the ankle (StepWatch [SW] with default and modified settings). AG data were processed with and without the low frequency extension (AGL) and with the Moving Average Vector Magnitude algorithm. In Part 1 (five trials), walking bouts were varied (4–12 steps) and rest intervals were held constant (10 s). In Part 2 (six trials), walking bouts were held constant (4 steps) and rest intervals were varied (1–10 s). Percent of hand-counted steps and mean absolute percentage error were calculated. One sample t-test was used to compare percent of hand-counted steps to 100%. Results: In Parts 1 and 2, the SWdefault, SWmodified, YX, and AGLhip captured within 10% of hand-counted steps across nearly all conditions. In Part 1, estimates of most methods improved as the number of steps per bout increased. In Part 2, estimates of most methods decreased as the rest duration increased. Conclusion: Most methods required stepping bouts of >6–10 consecutive steps to record steps. Rest intervals of 1–2 seconds were sufficient to break up walking bouts in many methods. The requirement for several consecutive steps in some methods causes an underestimation of steps in brief, intermittent bouts.

Restricted access

Susan Park, Lindsay P. Toth, Paul R. Hibbing, Cary M. Springer, Andrew S. Kaplan, Mckenzie D. Feyerabend, Scott E. Crouter and David R. Bassett

It has become common to wear physical activity monitors on the wrist to estimate steps per day, but few studies have considered step differences between monitors worn on the dominant and non-dominant wrists. Purpose: The purpose of this study was to compare four step counting methods on the dominant versus non-dominant wrist using the Fitbit Charge (FC) and ActiGraph GT9X (GT9X) across all waking hours of one day. Methods: Twelve participants simultaneously wore two monitors (FC and GT9X) on each wrist during all waking hours for an entire day. GT9X data were analyzed with three step counting methods: ActiLife algorithm with default filter (AG-noLFE), ActiLife algorithm with low-frequency extension (AG-LFE), and the Moving Average Vector Magnitude (AG-MAVM) algorithm. A 2-way repeated measures ANOVA (method × wrist) was used to compare step counts. Results: There was a significant main effect for wrist placement (F(1,11) = 11.81, p = .006), with the dominant wrist estimating an average of 1,253 more steps than the non-dominant wrist. Steps differed between the dominant and non-dominant wrist for three of the step methods: AG-noLFE (1,327 steps), AG-LFE (2,247 steps), AG-MAVM (825 steps), and approached statistical significance for FC (613 steps). No significant method x wrist placement interaction was found (F(3,9) = 2.62, p = .115). Conclusion: Findings suggest that for step counting algorithms, it may be important to consider the placement of wrist-worn monitors since the dominant wrist location tended to yield greater step estimates. Alternatively, standardizing the placement of wrist-worn monitors could help to reduce the differences in daily step counts across studies.