Search Results

You are looking at 1 - 2 of 2 items for :

  • Author: Raphael Faiss x
  • Physical Education and Coaching x
Clear All Modify Search
Restricted access

Samuel Sigrist, Thomas Maier and Raphael Faiss

Context: Track-cycling team pursuit (TP) is a highly technical effort involving 4 athletes completing 4 km from a standing start, often in less than 240 s. Transitions between athletes leading the team are obviously of utmost importance. Purpose: To perform qualitative video analyses of transitions of world-class athletes in TP competitions. Methods: Videos captured at 100 Hz were recorded for 77 races (including 96 different athletes) in 5 international track-cycling competitions (eg, UCI World Cups and World Championships) and analyzed for the 12 best teams in the UCI Track Cycling TP Olympic ranking. During TP, 1013 transitions were evaluated individually to extract quantitative (eg, average lead time, transition number, length, duration, height in the curve) and qualitative (quality of transition start, quality of return at the back of the team, distance between third and returning rider score) variables. Determination of correlation coefficients between extracted variables and end time allowed assessment of relationships between variables and relevance of the video analyses. Results: Overall quality of transitions and end time were significantly correlated (r = .35, P = .002). Similarly, transition distance (r = .26, P = .02) and duration (r = .35, P = .002) were positively correlated with end time. Conversely, no relationship was observed between transition number, average lead time, or height reached in the curve and end time. Conclusion: Video analysis of TP races highlights the importance of quality transitions between riders, with preferably swift and short relays rather than longer lead times for faster race times.

Restricted access

Raphael Faiss, Claudia von Orelli, Olivier Dériaz and Grégoire P. Millet

Purpose:

Hypoxia is known to reduce maximal oxygen uptake (VO2max) more in trained than in untrained subjects in several lowland sports. Ski mountaineering is practiced mainly at altitude, so elite ski mountaineers spend significantly longer training duration at altitude than their lower-level counterparts. Since acclimatization in hypobaric hypoxia is effective, the authors hypothesized that elite ski mountaineers would exhibit a VO2max decrement in hypoxia similar to that of recreational ski mountaineers.

Methods:

Eleven elite (E, Swiss national team) and 12 recreational (R) ski mountaineers completed an incremental treadmill test to exhaustion in normobaric hypoxia (H, 3000 m, FIO2 14.6% ± 0.1%) and in normoxia (N, 485 m, FIO2 20.9% ± 0.0%). Pulse oxygen saturation in blood (SpO2), VO2max, minute ventilation, and heart rate were recorded.

Results:

At rest, hypoxic ventilatory response was higher (P < .05) in E than in R (1.4 ± 1.9 vs 0.3 ± 0.6 L · min−1 · kg−1). At maximal intensity, SpO2 was significantly lower (P < .01) in E than in R, both in N (91.1% ± 3.3% vs 94.3% ± 2.3%) and in H (76.4% ± 5.4% vs 82.3% ± 3.5%). In both groups, SpO2 was lower (P < .01) in H. Between N and H, VO2max decreased to a greater extent (P < .05) in E than in R (–18% and –12%, P < .01). In E only, the VO2max decrement was significantly correlated with the SpO2 decrement (r = .74, P < .01) but also with VO2max measured in N (r = .64, P < .05).

Conclusion:

Despite a probable better acclimatization to altitude, VO2max was more reduced in E than in R ski mountaineers, confirming previous results observed in lowlander E athletes.