Search Results

You are looking at 1 - 10 of 17 items for

  • Author: Ric Lovell x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Individualization of Time–Motion Analysis: A Case-Cohort Example

Ric Lovell and Grant Abt

Purpose:

To report the intensity distribution of Premier League soccer players’ external loads during match play, according to recognized physiological thresholds. The authors also present a case in which individualized speed thresholds changed the interpretation of time–motion data.

Method:

Eight outfield players performed an incremental treadmill test to exhaustion to determine the running speeds associated with their ventilatory thresholds. The running speeds were then used to individualize time–motion data collected in 5 competitive fixtures and compared with commonly applied arbitrary speed zones.

Results:

Of the total distance covered, 26%, 57%, and 17% were performed at low, moderate, and high intensity, respectively. Individualized time– motion data identified a 41% difference in the high-intensity distance covered between 2 players of the same positional role, whereas the player-independent approach yielded negligible (5–7%) differences in total and high-speed distances covered.

Conclusions:

The authors recommend that individualized speed thresholds be applied to time–motion-analysis data in synergy with the traditional arbitrary approach.

Restricted access

PlayerLoad™: Reliability, Convergent Validity, and Influence of Unit Position during Treadmill Running

Steve Barrett, Adrian Midgley, and Ric Lovell

Purpose:

The study aimed to establish the test–retest reliability and convergent validity of PlayerLoad™ (triaxial-accelerometer data) during a standardized bout of treadmill running.

Methods:

Forty-four team-sport players performed 2 standardized incremental treadmill running tests (7–16 km/h) 7 d apart. Players’ oxygen uptake (VO2; n = 20), heart rate (n = 44), and triaxialaccelerometer data (PlayerLoad; n = 44) measured at both the scapulae and at the center of mass (COM), were recorded. Accelerometer data from the individual component planes of PlayerLoad (anteroposterior [PLAP], mediolateral [PLML], and vertical [PLV]) were also examined.

Results:

Moderate to high test–retest reliability was observed for PlayerLoad and its individual planes (ICC .80–.97, CV 4.2–14.8%) at both unit locations. PlayerLoad was significantly higher at COM vs scapulae (223.4 ± 42.6 vs 185.5 ± 26.3 arbitrary units; P = .001). The percentage contributions of individual planes to PlayerLoad were higher for PLML at the COM (scapulae 20.4% ± 3.8%, COM 26.5% ± 4.9%; P = .001) but lower for PLV (scapulae 55.7% ± 5.3%, COM 49.5% ± 6.9%; P = .001). Between-subjects correlations between PlayerLoad and VO2, and between PlayerLoad and heart rate were trivial to moderate (r = –.43 to .33), whereas within-subject correlations were nearly perfect (r = .92–.98).

Conclusions:

PlayerLoad had a moderate to high degree of test–retest reliability and demonstrated convergent validity with measures of exercise intensity on an individual basis. However, caution should be applied in making between-athletes contrasts in loading and when using recordings from the scapulae to identify lower-limb movement patterns.

Restricted access

Dose–Response Relationship Between External Load and Wellness in Elite Women’s Soccer Matches: Do Customized Velocity Thresholds Add Value?

Dawn Scott, Dean Norris, and Ric Lovell

Purpose: To examine the dose–response relationship between match-play high-speed running (HSR), very high-speed running (VHSR), and sprint (SPR) distances versus subsequent ratings of fatigue and soreness. Methods: Thirty-six outfield players competing in the professional National Women’s Soccer League (NWSL, United States) with a minimum of five 90-minute match observations were monitored during the 2016 and 2017 seasons (408 match observations, 11 [6]/player). HSR (≥3.47 m·s−1), VHSR (≥5.28 m·s−1), and SPR (≥6.25 m·s−1) were determined generically (GEN) in players using a 10-Hz global positioning system. HSR, VHSR, and SPR speed thresholds were also reconfigured according to player peak speed per se and in combination with the final velocity achieved in the 30:15 Intermittent Fitness Test (locomotor approach to establishing individual speed zones). On the morning following matches (match day [MD + 1]), players recorded subjective wellness ratings of fatigue and soreness using 7-point Likert scales. Results: Fatigue (−2.32; 95% CI, −2.60 to −2.03 au; P < .0001) and soreness (−2.05; 95% CI, −2.29 to −1.81; P < .0001) ratings worsened on MD + 1. Standardized unit changes in HSRGEN (fatigue: −0.05; 95% CI, −0.11 to 0.02 and soreness: −0.02, 95% CI, −0.07 to 0.04) and VHSRGEN (fatigue: −0.06; 95% CI, −0.12 to 0.00 and soreness: −0.04; 95% CI, −0.10 to 0.02) had no influence on wellness ratings at MD + 1. Individualized speed thresholds did not improve the model fit. Conclusions: Subjective ratings of fatigue and wellness are not sensitive to substantial within-player changes in match physical performance. HSR, VHSR, and SPR thresholds customized for individual players’ athletic qualities did not improve the dose–response relationship between external load and wellness ratings.

Restricted access

External Validity of the T-SAFT90: A Soccer Simulation Including Technical and Jumping Activities

Cristiano D. da Silva and Ric Lovell

Purpose: To examine the physiological, muscle-damage, endocrine, and immune responses to a modified soccer-simulation protocol to include technical and jumping activities characteristic of match play (the Technical Soccer-Specific Aerobic Field Test; T-SAFT90). Methods: Eighteen university players (age 23 [2] y, stature 175 [5] cm, body mass 74 [11] kg) performed the 90-minute protocol, with acute physiological responses monitored via heart rate, ratings of perceived exertion (6–20 scale), and body mass changes. Creatine kinase, myoglobin, cortisol, and leukocyte subset concentrations were measured at baseline, immediately (0 h), and 24 hours post T-SAFT90. Results: T-SAFT90 incurred an average heart rate equivalent to 87% (5%) of maximum, 16 (2) a.u. ratings of perceived exertion, and a 1.5% (1.0%) body mass deficit. Moderate to large proliferation of leukocyte subsets (P ≤ .01; leukocytes: 6.4-fold; neutrophils: 5.5-fold; lymphocytes: 2.0-fold) and increases in cortisol (2.3-fold) were observed at 0 hours (effect size = 1.13–3.52), each returning to baseline by 24 hours (P > .45; effect size = 0.05–0.50). Myoglobin peaked immediately post T-SAFT90 (4.8-fold), whereas creatine kinase (24 h: 6.0-fold) showed a delayed time course (both P ≤ .001; very large effects; effect size = 2.66 and 3.43, respectively). Conclusions: The magnitude and time course of the physiological, immune, endocrine, and muscle-damage markers observed during and following T-SAFT90 are similar to values reported in match-play literature, demonstrating external validity of the simulation.

Restricted access

Changes in Passive Tension of the Hamstring Muscles During a Simulated Soccer Match

Paul W.M. Marshall, Ric Lovell, and Jason C. Siegler

Purpose:

Passive muscle tension is increased after damaging eccentric exercise. Hamstring-strain injury is associated with damaging eccentric muscle actions, but no research has examined changes in hamstring passive muscle tension throughout a simulated sport activity. The authors measured hamstring passive tension throughout a 90-min simulated soccer match (SAFT90), including the warm-up period and every 15 min throughout the 90-min simulation.

Methods:

Passive hamstring tension of 15 amateur male soccer players was measured using the instrumented straight-leg-raise test. Absolute torque (Nm) and slope (Nm/°) of the recorded torque-angular position curve were used for data analysis, in addition to total leg range of motion (ROM). Players performed a 15-min prematch warm-up, then performed the SAFT90 including a 15-min halftime rest period.

Results:

Reductions in passive stiffness of 20–50° of passive hip flexion of 22.1−29.2% (P < .05) were observed after the warm-up period. During the SAFT90, passive tension increased in the latter 20% of the range of motion of 10.1−10.9% (P < .05) concomitant to a 4.5% increase in total hamstring ROM (P = .0009).

Conclusions:

The findings of this study imply that hamstring passive tension is reduced after an active warm-up that includes dynamic stretching but does not increase in a pattern suggestive of eccentric induced muscle damage during soccer-specific intermittent exercise. Hamstring ROM and passive tension increases are best explained by improved stretch tolerance.

Restricted access

Recovery of Force–Time Characteristics After Australian Rules Football Matches: Examining the Utility of the Isometric Midthigh Pull

Dean Norris, David Joyce, Jason Siegler, James Clock, and Ric Lovell

Purpose: This study assessed the utility of force–time characteristics from the isometric midthigh pull (IMTP) as a measure of neuromuscular function after elite-level Australian rules football matches. It was hypothesized that rate characteristics of force development would demonstrate a different response magnitude and recovery time course than peak force measurements. Methods: Force–time characteristics of the IMTP (peak force, 0- to 50-ms rate of force development [RFD], 100- to 200-ms RFD) were collected at 48 (G+2), 72 (G+3), and 96 h (G+4) after 3 competitive Australian rules football matches. Results: Meaningful reductions (>75% of the smallest worthwhile change) were observed at G+2, G+3, and G+4 for RFD 0–50 milliseconds (−25.8%, −17.5%, and −16.9%) and at G+2 and G+3 for RFD 100–200 milliseconds (−15.7% and −11.7%). No meaningful reductions were observed for peak force at any time point (G+2 −4.0%, G+3 −3.9%, G+4 −2.7%). Higher week-to-week variation was observed for RFD 0–50 milliseconds (G+2 17.1%, G+3 27.2%, G+4 19.3%) vs both RFD 100–200 milliseconds (G+2 11.3%, G+3 11.5%, G+4 7.2%) and peak force (G+2 4.8%, G+3 4.4%, G+4 8.4%). Conclusions: These findings highlight the potential use of rate characteristics from the IMTP as measures of neuromuscular function in elite sport settings, and in particular RFD 100–200 milliseconds due to its higher reliability. Interestingly, peak force collected from the IMTP was not meaningfully suppressed at any time point after elite Australian rules football match play. This suggests that rate characteristics from IMTP may provide more sensitive and valuable insight regarding neuromuscular function recovery kinetics than peak measures.

Open access

Impact of Microcycle Structures on Physical and Technical Outcomes During Professional Rugby League Training and Matches

Tahleya Eggers, Rebecca Cross, Dean Norris, Lachlan Wilmot, and Ric Lovell

Purpose: To assess the impact of microcycle (MC) structures on physical and technical performances in rugby league training and matches. Methods: Thirty-four professional rugby league players were monitored during all training sessions and matches across a single season wherein 2 different competition-phase MC structures were implemented. The first MC structure involved the first session on match day (MD) + 2 and the main stimulus delivered MD − 3, and the second structure delayed all sessions by 1 day (first session on MD + 3 and main session MD − 2; MC structure in the second half of the season). Physical output was quantified via relative total speed (in meters per minute), high-speed running (per minute; ≥4.0 m·s−1), and very-high-speed running (per minute; ≥5.5 m·s−1), measured using a global positioning system (10 Hz) in addition to accelerometer (100 Hz) metrics (PlayerLoad per minute and PlayerLoadslow per minute]) during training and matches. Technical performance (number of runs, meters gained, tackles made and missed) was recorded during matches. Generalized linear mixed models and equivalence tests were used to identify the impact of MC structure on physical and technical output. Results: Nonequivalent increases in meters per minute, high-speed running per minute, and PlayerLoad per minute were observed for the first training stimulus in MC structure in the second half of the season with no practical difference in midcycle sessions observed. The MC structure in the second half of the season structure resulted in increased high-speed running per minute and decreased PlayerLoadslow per minute during MD with no differences observed in technical performance. Conclusions: Delaying the first training stimulus of the MC allowed for greater training load accumulation without negative consequences in selected match running and technical performance measures. This increased MC load may support the maintenance of physical capacities across the in-season.

Restricted access

The Dose–Response in Elite Soccer: Preliminary Insights From Menstrual-Cycle Tracking During the FIFA Women’s World Cup 2019

Dawn Scott, Georgie Bruinvels, Dean Norris, and Ric Lovell

Purpose: This preliminary study examined the influence of estimated menstrual-cycle (MC) phase on responses to soccer matches and training sessions in preparation for and during the FIFA (Fédération internationale de football association) Women’s World Cup 2019. Methods: Twenty outfield players representing a national team were tracked over a 45-day period. External (10-Hz global positioning system; total and distance covered at high-metabolic power [≥20 W·kg−1]) and internal load measures (minutes ≥80% heart-rate maximum, sessional ratings of perceived exertion) were collected during all training and matches, with single-item wellness measures (fatigue, soreness, sleep quality, and sleep duration) collected each morning prior to activity. MC phase was estimated individually via an algorithm, informed from pretournament survey responses and ongoing symptom reporting (FitrWoman). Model comparison statistics were used to determine the impact of estimated MC phase in nonhormonal contraceptive users (n = 16). Results: Sessional rating of perceived exertion responses to total distances ≥5 km were higher during the luteal phase (+0.6–1.0 au; P ≤ .0178) versus menstruation (phase 1), but no other observable dose–response trends were observed. Sleep, fatigue, and soreness ratings were not typically associated with MC phase, with the exception of exacerbated fatigue ratings in luteal versus follicular phase 48 hours postmatch (−0.73 au, P = .0275). Conclusions: Preliminary findings suggest that estimated MC phase may contribute to the understanding of the dose–response to soccer training and matches.

Restricted access

Within-Match PlayerLoad™ Patterns During a Simulated Soccer Match: Potential Implications for Unit Positioning and Fatigue Management

Steve Barrett, Adrian W. Midgley, Christopher Towlson, Andrew Garrett, Matt Portas, and Ric Lovell

Purpose:

To assess the acute alterations in triaxial accelerometry (PlayerLoad [PLVM]) and its individual axial planes (anteroposterior PlayerLoad [PLAP], mediolateral PlayerLoad [PLML], and vertical PlayerLoad [PLV]) during a standardized 90-min soccer match-play simulation (SAFT90). Secondary aims of the study were to assess the test–retest reliability and anatomical location of the devices.

Methods:

Semiprofessional (n = 5) and university (n = 15) soccer players completed 3 trials (1 familiarization, 2 experimental) of SAFT90. PlayerLoad and its individual planes were measured continuously using micromechanical-electrical systems (MEMS) positioned at the scapulae (SCAP) and near the center of mass (COM).

Results:

There were no between-halves differences in PLVM; however, within-half increases were recorded at the COM, but only during the 1st half at the SCAP. Greater contributions to PLVM were provided by PLV and PLML when derived from the SCAP and COM, respectively. PLVM (COM 1451 ± 168, SCAP 1029 ± 113), PLAP (COM 503 ± 99, SCAP 345 ± 61), PLML (COM 712 ± 124, SCAP 348 ± 61), and PLV (COM 797 ± 184, SCAP 688 ± 124) were significantly greater at the COM than at the SCAP. Moderate and high test–retest reliability was observed for PlayerLoad and its individual planes at both locations (ICC .80–.99).

Conclusions:

PlayerLoad and its individual planes are reliable measures during SAFT90 and detected within-match changes in movement strategy when the unit was placed at the COM, which may have implications for fatigue management. Inferring alterations in lower-limb movement strategies from MEMS units positioned at the SCAP should be undertaken with caution.

Open access

Unpacking the Black Box: Applications and Considerations for Using GPS Devices in Sport

James J. Malone, Ric Lovell, Matthew C. Varley, and Aaron J. Coutts

Athlete-tracking devices that include global positioning system (GPS) and microelectrical mechanical system (MEMS) components are now commonplace in sport research and practice. These devices provide large amounts of data that are used to inform decision making on athlete training and performance. However, the data obtained from these devices are often provided without clear explanation of how these metrics are obtained. At present, there is no clear consensus regarding how these data should be handled and reported in a sport context. Therefore, the aim of this review was to examine the factors that affect the data produced by these athlete-tracking devices and to provide guidelines for collecting, processing, and reporting of data. Many factors including device sampling rate, positioning and fitting of devices, satellite signal, and data-filtering methods can affect the measures obtained from GPS and MEMS devices. Therefore researchers are encouraged to report device brand/model, sampling frequency, number of satellites, horizontal dilution of precision, and software/firmware versions in any published research. In addition, details of inclusion/exclusion criteria for data obtained from these devices are also recommended. Considerations for the application of speed zones to evaluate the magnitude and distribution of different locomotor activities recorded by GPS are also presented, alongside recommendations for both industry practice and future research directions. Through a standard approach to data collection and procedure reporting, researchers and practitioners will be able to make more confident comparisons from their data, which will improve the understanding and impact these devices can have on athlete performance.