Search Results

You are looking at 1 - 2 of 2 items for :

  • Author: Serge S. Colson x
  • Sport and Exercise Science/Kinesiology x
  • All content x
Clear All Modify Search
Restricted access

Fabrice Vercruyssen, Mathieu Gruet, Serge S. Colson, Sabine Ehrstrom, and Jeanick Brisswalter

Background:

Physiological mechanisms behind the use of compression garments (CGs) during off-road running are unknown.

Purpose:

To investigate the influence of wearing CGs vs conventional running clothing (CON) on muscle contractile function and running economy before and after short-distance trail running.

Methods:

Knee-extensor neuromuscular function and running economy assessed from two 5-min treadmill runs (11 and 14 km/h) were evaluated before and after an 18.6-km short-distance trail run in 12 trained athletes wearing either CGs (stocking + short-tight) or CON. Quadriceps neuromuscular function was assessed from mechanical and EMG recording after maximal percutaneous electrical femoral-nerve stimulations (single-twitch doublets at 10 [Db10] and 100 Hz [Db100] delivered at rest and during maximal quadriceps voluntary contraction [MVC]).

Results:

Running economy (in mL O2 · km–1 · kg–1) increased after trail running independent of the clothing condition and treadmill speeds (P < .001). Similarly, MVC decreased after CON and CGs conditions (–11% and –13%, respectively, P < .001). For both clothing conditions, a significant decrease in quadriceps voluntary activation, Db10, Db100, and the low-to-high frequency doublet ratio were observed after trail running (time effect, all P < .01), without any changes in rectus femoris maximal M-wave.

Conclusions:

Wearing CGs does not reduce physiological alterations induced during short-distance trail running. Further studies should determine whether higher intensity of compression pressure during exercises of longer duration may be effective to induce any physiological benefits in experienced trail runners.

Restricted access

Olivier Seynnes, Olivier A. Hue, Frédéric Garrandes, Serge S. Colson, Pierre L. Bernard, Patrick Legros, and Maria A. Fiatarone Singh

The relationship between isometric force control and functional performance is unknown. Submaximal steadiness and accuracy were measured during a constant force-matching task at 50% of maximal isometric voluntary contraction (MVC) of the knee extensors in 19 older women (70–89 years). Other variables included MVC, rate of torque development, and EMG activity. Functional performance was assessed during maximal performance of walking endurance, chair rising, and stair climbing. Isometric steadiness (but not accuracy) was found to independently predict chair-rise time and stair-climbing power and explained more variance in these tasks than any other variable. Walking endurance was related to muscle strength but not steadiness. These results suggest that steadiness is an independent predictor of brief, stressful functional-performance tasks in older women with mild functional impairment. Thus, improving steadiness might help reduce functional limitations or disability in older adults.