We conducted a counterbalanced repeated measure trial to investigate the effect of different internal and external associative strategies on endurance performance. Seventeen college-aged students were randomly assigned to three experimental conditions to test the notion that different attention-performance types (optimal Type 1, functional Type 2, and dysfunctional Type 3) would influence endurance time on a cycling task. Specifically, Type 1 represented an effortless and automatic, “flow-feeling” attentional mode. Type 2 referred to an associative focus directed at core components of the task. Type 3 represented an attentional focus directed at irrelevant components of the task. Participants completed three time-to-exhaustion-tests while reporting their perceived exertion and affective states (arousal and hedonic tone). Results revealed that Type 1 and Type 2 attentional strategies, compared with Type 3 strategy, exerted functional effects on performance, whereas a Type 3 strategy was linked to lower performance, and lower levels of arousal and pleasantness. Applied implications are discussed.
Search Results
You are looking at 1 - 6 of 6 items for
- Author: Victor Machado Reis x
- Refine by Access: All Content x
To Focus or Not to Focus: Is Attention on the Core Components of Action Beneficial for Cycling Performance?
Maurizio Bertollo, Selenia di Fronso, Edson Filho, Vito Lamberti, Patrizio Ripari, Victor Machado Reis, Silvia Comani, Laura Bortoli, and Claudio Robazza
Bioenergetic Analysis and Fatigue Assessment During the Fran Workout in Experienced Crossfitters
Manoel Rios, Rodrigo Zacca, Rui Azevedo, Pedro Fonseca, David B. Pyne, Victor Machado Reis, Daniel Moreira-Gonçalves, and Ricardo J. Fernandes
Aim: To quantify the physiological demands and impact of muscle function t of the Fran workout, one of the most popular CrossFit benchmarks. Methods: Twenty experienced CrossFitters—16 male: 29 (6) years old and 4 female: 26 (5) years old— performed 3 rounds (with 30-s rests in between) of 21–21, 15–15, and 9–9 front squats to overhead press plus pull-up repetitions. Oxygen uptake and heart rate were measured at baseline, during the workout, and in the recovery period. Rating of perceived exertion, blood lactate, and glucose concentrations were assessed at rest, during the intervals, and in the recovery period. Muscular fatigue was also monitored at rest and at 5 minutes, 30 minutes, and 24 hours postexercise. Repeated-measures analysis of variance was performed to compare time points. Results: Aerobic (52%–29%) and anaerobic alactic (30%–23%) energy contributions decreased and the anaerobic lactic contribution increased (18%–48%) across the 3 rounds of the Fran workout. Countermovement jump height decreased by 8% (−12 to −3) mean change (95% CI), flight duration by 14% (−19 to −7), maximum velocity by 3% (−5 to −0.1), peak force 4% (−7 to −0.1), and physical performance (plank prone 47% [−54 to −38]) were observed. Conclusions: It appears that the Fran workout is a physically demanding activity that recruits energy from both aerobic and anaerobic systems. This severe-intensity workout evokes substantial postexercise fatigue and corresponding reduction in muscle function.
Effect of the Fran CrossFit Workout on Oxygen Uptake Kinetics, Energetics, and Postexercise Muscle Function in Trained CrossFitters
Manoel Rios, Klaus Magno Becker, Ana Sofia Monteiro, Pedro Fonseca, David B. Pyne, Victor Machado Reis, Daniel Moreira-Gonçalves, and Ricardo J. Fernandes
Purpose: Fran is one of the most popular CrossFit benchmark workouts used to control CrossFitters’ improvements. Detailed physiological characterization of Fran is needed for a more specific evaluation of CrossFitters’ training performance improvements. The aim of the study was to analyze the oxygen uptake (
Three-Dimensional CFD Analysis of the Hand and Forearm in Swimming
Daniel A. Marinho, António J. Silva, Victor M. Reis, Tiago M. Barbosa, João P. Vilas-Boas, Francisco B. Alves, Leandro Machado, and Abel I. Rouboa
The purpose of this study was to analyze the hydrodynamic characteristics of a realistic model of an elite swimmer hand/forearm using three-dimensional computational fluid dynamics techniques. A three-dimensional domain was designed to simulate the fluid flow around a swimmer hand and forearm model in different orientations (0°, 45°, and 90° for the three axes Ox, Oy and Oz). The hand/forearm model was obtained through computerized tomography scans. Steady-state analyses were performed using the commercial code Fluent. The drag coefficient presented higher values than the lift coefficient for all model orientations. The drag coefficient of the hand/forearm model increased with the angle of attack, with the maximum value of the force coefficient corresponding to an angle of attack of 90°. The drag coefficient obtained the highest value at an orientation of the hand plane in which the model was directly perpendicular to the direction of the flow. An important contribution of the lift coefficient was observed at an angle of attack of 45°, which could have an important role in the overall propulsive force production of the hand and forearm in swimming phases, when the angle of attack is near 45°.
Hydrodynamic Drag during Gliding in Swimming
Daniel A. Marinho, Victor M. Reis, Francisco B. Alves, João P. Vilas-Boas, Leandro Machado, António J. Silva, and Abel I. Rouboa
This study used a computational fluid dynamics methodology to analyze the effect of body position on the drag coefficient during submerged gliding in swimming. The k-epsilon turbulent model implemented in the commercial code Fluent and applied to the flow around a three-dimensional model of a male adult swimmer was used. Two common gliding positions were investigated: a ventral position with the arms extended at the front, and a ventral position with the arms placed along side the trunk. The simulations were applied to flow velocities of between 1.6 and 2.0 m·s−1, which are typical of elite swimmers when gliding underwater at the start and in the turns. The gliding position with the arms extended at the front produced lower drag coefficients than with the arms placed along the trunk. We therefore recommend that swimmers adopt the arms in front position rather than the arms beside the trunk position during the underwater gliding.
Swimming Propulsion Forces Are Enhanced by a Small Finger Spread
Daniel A. Marinho, Tiago M. Barbosa, Victor M. Reis, Per L. Kjendlie, Francisco B. Alves, João P. Vilas-Boas, Leandro Machado, António J. Silva, and Abel I. Rouboa
The main aim of this study was to investigate the effect of finger spread on the propulsive force production in swimming using computational fluid dynamics. Computer tomography scans of an Olympic swimmer hand were conducted. This procedure involved three models of the hand with differing finger spreads: fingers closed together (no spread), fingers with a small (0.32 cm) spread, and fingers with large (0.64 cm) spread. Steady-state computational fluid dynamics analyses were performed using the Fluent code. The measured forces on the hand models were decomposed into drag and lift coefficients. For hand models, angles of attack of 0°, 15°, 30°, 45°, 60°, 75°, and 90°, with a sweep back angle of 0°, were used for the calculations. The results showed that the model with a small spread between fingers presented higher values of drag coefficient than did the models with fingers closed and fingers with a large spread. One can note that the drag coefficient presented the highest values for an attack angle of 90° in the three hand models. The lift coefficient resembled a sinusoidal curve across the attack angle. The values for the lift coefficient presented few differences among the three models, for a given attack angle. These results suggested that fingers slightly spread could allow the hand to create more propulsive force during swimming.