Search Results

You are looking at 1 - 5 of 5 items for

  • Author: Adam W. Kiefer x
Clear All Modify Search
Restricted access

Christopher A. DiCesare, Adam W. Kiefer, Scott Bonnette and Gregory D. Myer

Context: Laboratory-based biomechanical analyses of sport-relevant movements such as landing and cutting have classically been used to quantify kinematic and kinetic factors in the context of injury risk, which are then used to inform targeted interventions designed to improve risky movement patterns during sport. However, the noncontextual nature of standard assessments presents challenges for assessing sport-relevant skill transfer. Objective: To examine injury-risk biomechanical differences exhibited by athletes during a jump-landing task performed as part of both a standard biomechanical assessment and a simulated, sport-specific virtual reality (VR)-based assessment. Design: Observational study. Setting: Medical center laboratory. Participants: Twenty-two female adolescent soccer athletes (age = 16.0 [1.4] y, height = 165.6 [4.9] cm, and weight = 60.2 [11.4] kg). Interventions: The landing performance was analyzed for a drop vertical jump task and a VR-based, soccer-specific corner-kick scenario in which the athletes were required to jump to head a virtual soccer ball and land. Main Outcome Measures: Hip, knee, and ankle joint kinematic differences in the frontal and sagittal planes. Results: Athletes exhibited reduced hip and ankle flexion, hip abduction, and frontal plane ankle excursion during landing in realistic sport scenario compared with the standard drop vertical jump task. Conclusion: VR-based assessments can provide a sport-specific context in which to assess biomechanical deficits that predispose athletes for lower-extremity injury and offer a promising approach to better evaluate skill transfer to sport that can guide future injury prevention efforts.

Restricted access

Christopher A. DiCesare, Scott Bonnette, Gregory D. Myer and Adam W. Kiefer

Biomechanical analysis can effectively identify factors associated with task performance and injury risk, but often does not account for the interaction among the components that underlie task execution. Uncontrolled manifold (UCM) analyses were applied to data from 38 female, adolescent athletes performing single-leg drop landings and were used to differentiate successful and unsuccessful task performance by examining the frontal plane joint variance within the UCM (V UCM) that stabilized the horizontal center of mass position (V UCM) and within the orthogonal subspace (V ORT). The UCM revealed stronger coordination, indicated by the V UCM/V ORT ratio, in the successful condition. This may inform future research examining reduced motor coordination in failed movement tasks and its relation to injury risk and allow for targeted interventions that consider coordination processes rather than joint-specific outcomes.

Restricted access

Scott Bonnette, Christopher A. DiCesare, Adam W. Kiefer, Michael A. Riley, Kim D. Barber Foss, Staci Thomas, Katie Kitchen, Jed A. Diekfuss and Gregory D. Myer

Context: Existing anterior cruciate ligament (ACL) injury prevention programs have failed to reverse the high rate of ACL injuries in adolescent female athletes. Objective: This investigation attempts to overcome factors that limit efficacy with existing injury prevention programs through the use of a novel, objective, and real-time interactive visual feedback system designed to reduce the biomechanical risk factors associated with ACL injuries. Design: Cross-over study. Setting: Medical center laboratory. Participants: A total of 20 females (age = 19.7 [1.34] y; height = 1.74 [0.09] m; weight = 72.16 [12.45] kg) participated in this study. Methods: Participants performed sets of 10 bodyweight squats in each of 8 training blocks (ie, 4 real-time and 4 control blocks) and 3 testing blocks for a total of 110 squats. Feedback conditions were blocked and counterbalanced with half of participants randomly assigned to receive the real-time feedback block first and half receiving the control (sham) feedback first. Results: Heat map analysis revealed that during interaction with the real-time feedback, squat performance measured in terms of key biomechanical parameters was improved compared with performance when participants squatted with the sham stimulus. Conclusions: This study demonstrates that the interactive feedback system guided participants to significantly improve movement biomechanics during performance of a body weight squat, which is a fundamental exercise for a longer term ACL injury risk reduction intervention. A longer training and testing period is necessary to investigate the efficacy of this feedback approach to effect long-term adaptations in the biomechanical risk profile of athletes.

Restricted access

Gregory D. Myer, Nathaniel A. Bates, Christopher A. DiCesare, Kim D. Barber Foss, Staci M. Thomas, Samuel C. Wordeman, Dai Sugimoto, Benjamin D. Roewer, Jennifer M. Medina McKeon, Stephanie L. Di Stasi, Brian W. Noehren, Michael McNally, Kevin R. Ford, Adam W. Kiefer and Timothy E. Hewett


Due to the limitations of single-center studies in achieving appropriate sampling with relatively rare disorders, multicenter collaborations have been proposed to achieve desired sampling levels. However, documented reliability of biomechanical data is necessary for multicenter injury-prevention studies and is currently unavailable.


To measure the reliability of 3-dimensional (3D) biomechanical waveforms from kinetic and kinematic variables during a single-leg landing (SLL) performed at 3 separate testing facilities.


Multicenter reliability study.


3 laboratories.


25 female junior varsity and varsity high school volleyball players who visited each facility over a 1-mo period.


Subjects were instrumented with 43 reflective markers to record 3D motion as they performed SLLs. During the SLL the athlete balanced on 1 leg, dropped down off of a 31-cm-high box, and landed on the same leg. Kinematic and kinetic data from both legs were processed from 2 trials across the 3 laboratories.

Main Outcome Measures:

Coefficients of multiple correlations (CMC) were used to statistically compare each joint angle and moment waveform for the first 500 ms of landing.


Average CMC for lower-extremity sagittal-plane motion was excellent between laboratories (hip .98, knee .95, ankle .99). Average CMC for lower-extremity frontal-plane motion was also excellent between laboratories (hip .98, knee .80, ankle .93). Kinetic waveforms were repeatable in each plane of rotation (3-center mean CMC ≥.71), while knee sagittal-plane moments were the most consistent measure across sites (3-center mean CMC ≥.94).


CMC waveform comparisons were similar relative to the joint measured to previously published reports of between-sessions reliability of sagittal- and frontal-plane biomechanics performed at a single institution. Continued research is needed to further standardize technology and methods to help ensure that highly reliable results can be achieved with multicenter biomechanical screening models.

Restricted access

Dustin R. Grooms, Adam W. Kiefer, Michael A. Riley, Jonathan D. Ellis, Staci Thomas, Katie Kitchen, Christopher A. DiCesare, Scott Bonnette, Brooke Gadd, Kim D. Barber Foss, Weihong Yuan, Paula Silva, Ryan Galloway, Jed A. Diekfuss, James Leach, Kate Berz and Gregory D. Myer

Context: A limiting factor for reducing anterior cruciate ligament injury risk is ensuring that the movement adaptions made during the prevention program transfer to sport-specific activity. Virtual reality provides a mechanism to assess transferability, and neuroimaging provides a means to assay the neural processes allowing for such skill transfer. Objective: To determine the neural mechanisms for injury risk–reducing biomechanics transfer to sport after anterior cruciate ligament injury prevention training. Design: Cohort study. Setting: Research laboratory. Participants: Four healthy high school soccer athletes. Interventions: Participants completed augmented neuromuscular training utilizing real-time visual feedback. An unloaded knee extension task and a loaded leg press task were completed with neuroimaging before and after training. A virtual reality soccer-specific landing task was also competed following training to assess transfer of movement mechanics. Main Outcome Measures: Landing mechanics during the virtual reality soccer task and blood oxygen level–dependent signal change during neuroimaging. Results: Increased motor planning, sensory and visual region activity during unloaded knee extension and decreased motor cortex activity during loaded leg press were highly correlated with improvements in landing mechanics (decreased hip adduction and knee rotation). Conclusion: Changes in brain activity may underlie adaptation and transfer of injury risk–reducing movement mechanics to sport activity. Clinicians may be able to target these specific brain processes with adjunctive therapy to facilitate intervention improvements transferring to sport.