Search Results

You are looking at 1 - 10 of 17 items for

  • Author: Alejandro Lucia x
Clear All Modify Search
Restricted access

Alejandro Lucía, María Morán, He Zihong and Jonatan R. Ruiz

Recent research has analyzed the genetic factors that influence world-class athletic status. Much of what we know comes from association studies, with the ACE I/D and ACTN3 R577X polymorphisms having been extensively studied. The association between the ACTN3 R577X variation and elite athlete status in power sports is strongly documented, yet whether the current body of knowledge on other variants can be extrapolated to athletic champion status remains to be determined. Athletic champion status is a complex polygenic trait in which numerous candidate genes, complex gene–gene interactions, and environment–gene interactions are involved. Besides the need for more studies and new approaches taking into account the complexity of the problem, we believe that factors beyond genetic endowment are likely to have a stronger influence in the attainment of athletic champion status.

Restricted access

Jonatan R. Ruiz, Carmen Fiuza-Luces, Nuria Garatachea and Alejandro Lucia

For centuries, the general consensus has been that vigorous, competitive exercise was harmful and shortened life expectancy. Recent data from prospective cohort studies conducted on marathon runners, professional cyclists, and Olympic athletes indicate, however, that regular intense endurance-exercise training has protective benefits against cardiovascular disease and premature death. There are still important questions to be answered, such as what is the optimal dose, in terms of both duration and intensity of training or competition, beyond which the health benefits of regular exercise stabilize or might even potentially disappear.

Restricted access

Alfredo Santalla, Conrad P. Earnest, José A. Marroyo and Alejandro Lucia

From its initial inception in 1903 as a race premised on a publicity stunt to sell newspapers, the Tour de France had grown and evolved over time to become one of the most difficult and heralded sporting events in the world. Though sporting science and the Tour paralleled each other, it was not until the midlate 1980s, and especially the midlate 1990s (with the use of heart-rate monitors) that the 2 began to unify and grow together. The purpose of this brief review is to summarize what is currently known of the physiological demands of the Tour de France, as well as of the main physiological profile of Tour de France competitors.

Restricted access

Pedro L. Valenzuela, Guillermo Sánchez-Martínez, Elaia Torrontegi, Zigor Montalvo, Alejandro Lucia and Pedro de la Villa

Purpose: Enhanced external counterpulsation (EECP) is a recovery strategy whose use has increased in recent years owing to the benefits observed in the clinical setting in some cardiovascular diseases (ie, improvement of cardiovascular function). However, its claimed effectiveness for the enhancement of exercise recovery has not been analyzed in athletes. The aim of this study was to determine the effectiveness of EECP on short-term recovery after a fatiguing exercise bout. Methods: Twelve elite junior triathletes (16 [2] y) participated in this crossover counterbalanced study. After a high-intensity interval training session (6 bouts of 3-min duration at maximal intensity interspersed with 3-min rest periods), participants were assigned to recover during 30 min with EECP (80 mm Hg) or sham (0 mm Hg). Measures of recovery included performance (jump height and mean power during an 8-min time trial), metabolic (blood lactate concentration at several time points), autonomic (heart-rate variability at several time points), and subjective (rating of perceived exertion [RPE] and readiness to compete) outcomes. Results: There were no differences between EECP and sham in mean RPE or power output during the high-intensity interval training session, which elicited a significant performance impairment, vagal withdrawal, and increased blood lactate and RPE in both EECP and sham conditions (all P < .05). No significant differences were found in performance, metabolic, or subjective outcomes between conditions at any time point. A significantly lower high-frequency power (P < .05, effect size = 1.06), a marker of parasympathetic activity, was observed with EECP at the end of the recovery phase. Conclusion: EECP did not enhance short-term recovery after a high-intensity interval training session in healthy, highly trained individuals.

Restricted access

Pedro L. Valenzuela, Javier S. Morales, Carl Foster, Alejandro Lucia and Pedro de la Villa

Purpose: To analyze the relationship between functional threshold power (FTP) and the lactate threshold (LT). Methods: A total of 20 male cyclists performed an incremental test in which LT was determined. At least 48 h later, they performed a 20-min time trial, and 95% of the mean power output was defined as FTP. Participants were divided into recreational (peak power output < 4.5 W·kg−1; n = 11) or trained cyclists (peak power output > 4.5 W·kg−1; n = 9) according to their fitness status. Results: The FTP (240 [35] W) was overall not significantly different (effect size = 0.20; limits of agreement = −2.4% [11.5%]) from the LT (246 [24] W), and both markers were strongly correlated (r = .95; P < .0001). Accounting for the participants’ fitness status, no significant differences were found between FTP and LT (effect size = 0.22; limits of agreement =2.1% [7.8%]) in trained cyclists, but FTP was significantly lower than the LT (P = .0004, effect size = 0.81; limits of agreement =−6.5% [8.3%]) in recreational cyclists. A significant relationship was found between relative peak power output and the bias between FTP and the LT markers (r = .77; P < .0001). Conclusions: FTP is a valid field test-based marker for the assessment of endurance fitness. However, caution should be taken when using FTP interchangeably with LT, as the bias between markers seems to depend on the athlete’s fitness status. Whereas FTP provides a good estimate of LT in trained cyclists, in recreational cyclists, it may underestimate LT.

Restricted access

Gil Rodas, Lourdes Osaba, David Arteta, Ricard Pruna, Dolors Fernández and Alejandro Lucia

Purpose: The authors investigated the association between risk of tendinopathies and genetic markers in professional team sports. Methods: The authors studied 363 (mean [SD]; 25 [6] y, 89% male) elite players (soccer, futsal, basketball, handball, and roller hockey) from a top-level European team (FC Barcelona, Spain). Of 363, 55% (cases) had experienced 1+ episodes of tendinopathy during 2008–2018 and 45% (controls) remained injury free. The authors first examined the association between single-nucleotide polymorphisms (SNPs) and tendinopathy risk in a hypothesis-free case-control genome-wide association study (495,837 SNPs) with additional target analysis of 58 SNPs that are potential candidates to influence tendinopathy risk based on the literature. Thereafter, the authors augmented the SNP set by performing synthetic variant imputation (1,419,369 SNPs) and then used machine learning-based multivariate modeling (support vector machine and random forest) to build a reliable predictive model. Results: Suggestive association (P < 10−5) was found for rs11154027 (gap junction alpha 1), rs4362400 (vesicle amine transport 1-like), and rs10263021 (contactin-associated protein-like 2). Carriage of 1+ variant alleles for rs11154027 (odds ratio = 2.11; 95% confidence interval, 1.07–4.19, P = 1.01 × 10−6) or rs4362400 (odds ratio = 1.98; 95% confidence interval, 1.05–3.73, P = 9.6 × 10−6) was associated with a higher risk of tendinopathy, whereas an opposite effect was found for rs10263021 (odds ratio = 0.42; 95% confidence interval, 0.20–0.91], P = 4.5 × 10−6). In the modeling approach, one of the most robust SNPs was rs10477683 in the fibrillin 2 gene encoding fibrillin 2, a component of connective tissue microfibrils involved in elastic fiber assembly. Conclusions : The authors have identified previously undescribed genetic predictors of tendinopathy in elite team sports athletes, notably rs11154027, rs4362400, and rs10263021.

Restricted access

Nuria Garatachea, Zoraida Verde, Alejandro Santos-Lozano, Thomas Yvert, Gabriel Rodriguez-Romo, Francisco J. Sarasa, Sonsoles Hernández-Sánchez, Catalina Santiago and Alejandro Lucia

Purpose:

To determine the association of the ACTN3 R577X polymorphism with leg-muscle explosive power in Spanish (white) elite basketball players and controls.

Participants:

100 (60 men) elite basketball players (cases) and 283 nonathletic controls.

Methods:

The authors assessed power performance by means of the vertical-squat and countermovement-jump tests.

Results:

Genotype distributions did not differ between groups (cases: 37.0% [RR], 42.0% [RX], and 21.0% [XX]; controls: 31.8% [RR], 49.8% [RX], and 18.4% [XX]; P = .353). The authors did not observe any effect of the ACTN3 R577X polymorphism on study phenotypes in either group, including when they performed the analyses separately in men and women. They found no association between the ACTN3 R577X polymorphism and the likelihood of being an elite basketball player using the dominant or the recessive model, and the results remained unaltered when the analyses were adjusted for sex, weight, height, and age or when performed for men and women separately.

Conclusions:

Although the ACTN3 R577X is associated with explosive muscle performance and this phenotype is important in the sport of basketball (ie, during jumps), the authors found no association with leg explosive power in elite basket players or with the status of being this type of athlete.

Restricted access

Alejandro Santos-Lozano, Ana M. Angulo, Pilar S. Collado, Fabian Sanchis-Gomar, Helios Pareja-Galeano, Carmen Fiuza-Luces, Alejandro Lucia and Nuria Garatachea

Most studies on aging and marathon have analyzed elite marathoners, yet the latter only represent a very small fraction of all marathon participants. In addition, analysis of variance or unpaired Student t tests are frequently used to compare mean performance times across age groups. In this report the authors propose an alternative methodology to determine the impact of aging on marathon performance in both nonelite and elite marathoners participating in the New York City Marathon. In all, 471,453 data points corresponding to 370,741 different runners over 13 race editions (1999–2011) were retrieved. Results showed that the effect of aging on marathon performance was overall comparable in both sexes, the effect of aging differed between the fastest and slowest runners in both sexes, and the magnitude of the sex differences was higher in the slowest runners than in the fastest ones. Current data suggest that the biological differences between sexes allow men to have better marathon performance across most of the human life span.

Restricted access

Adrián Hernández-Vicente, Alejandro Santos-Lozano, Carmen Mayolas-Pi, Gabriel Rodríguez-Romo, Helios Pareja-Galeano, Natalia Bustamante, Eva M. Gómez-Trullén, Alejandro Lucia and Nuria Garatachea

To objectively assess physical activity levels and sedentary behavior in a cohort of Spanish centenarians and their nonagenarian peers. Physical activity and sedentary behavior patterns were objectively measured by an ActiGraph GT3X accelerometer in centenarians (n = 18; 83% women; 100.8 ± 0.8 [100–103] years) and nonagenarians (n = 11; 91% women; 93.3 ± 2.5 [90–98] years). Centenarians showed less counts per minute (17.6 ± 7.1 vs. 46.1 ± 23.7, p = .003, d = 1.851) and steps per day (455 ± 237 vs. 1,249 ± 776, p = .007, d = 1.587) than nonagenarians. The daily number of sedentary breaks was also lower in the former (5.0 ± 1.5 vs. 6.7 ± 2.0, p = .019, d = 0.971). When observing time distribution, the most active day period in both groups was the morning, with a peak between 10:00 and 11:59. This data suggest that the decline in physical activity levels continues to worsen until the end of the human lifespan.

Restricted access

Jos J. de Koning, Carl Foster, Alejandro Lucia, Maarten F. Bobbert, Florentina J. Hettinga and John P. Porcari