Search Results

You are looking at 1 - 8 of 8 items for

  • Author: Alejandro Pérez-Castilla x
Clear All Modify Search
Restricted access

Amador García-Ramos, Alejandro Torrejón, Alejandro Pérez-Castilla, Antonio J. Morales-Artacho and Slobodan Jaric

Purpose: To explore the feasibility of the linear force–velocity (F–V) modeling approach to detect selective changes of F–V parameters (ie, maximum force [F 0], maximum velocity [V 0], F–V slope [a], and maximum power [P 0]) after a sprint-training program. Methods: Twenty-seven men were randomly assigned to a heavy-load group (HLG), light-load group (LLG), or control group (CG). The training sessions (6 wk × 2 sessions/wk) comprised performing 8 maximal-effort sprints against either heavy (HLG) or light (LLG) resistances in leg cycle-ergometer exercise. Pre- and posttest consisted of the same task performed against 4 different resistances that enabled the determination of the F–V parameters through the application of the multiple-point method (4 resistances used for the F–V modeling) and the recently proposed 2-point method (only the 2 most distinctive resistances used). Results: Both the multiple-point and the 2-point methods revealed high reliability (all coefficients of variation <5% and intraclass correlation coefficients >.80) while also being able to detect the group-specific training-related changes. Large increments of F 0, a, and P 0 were observed in HLG compared with LLG and CG (effect size [ES] = 1.29–2.02). Moderate increments of V 0 were observed in LLG compared with HLG and CG (ES = 0.87–1.15). Conclusions: Short-term sprint training on a leg cycle ergometer induces specific changes in F–V parameters that can be accurately monitored by applying just 2 distinctive resistances during routine testing.

Restricted access

Amador García-Ramos, Alejandro Torrejón, Antonio J. Morales-Artacho, Alejandro Pérez-Castilla and Slobodan Jaric

This study determined the optimal resistive forces for testing muscle capacities through the standard cycle ergometer test (1 resistive force applied) and a recently developed 2-point method (2 resistive forces used for force-velocity modelling). Twenty-six men were tested twice on maximal sprints performed on a leg cycle ergometer against 5 flywheel resistive forces (R1–R5). The reliability of the cadence and maximum power measured against the 5 individual resistive forces, as well as the reliability of the force-velocity relationship parameters obtained from the selected 2-point methods (R1–R2, R1–R3, R1–R4, and R1–R5), were compared. The reliability of outcomes obtained from individual resistive forces was high except for R5. As a consequence, the combination of R1 (≈175 rpm) and R4 (≈110 rpm) provided the most reliable 2-point method (CV: 1.46%–4.04%; ICC: 0.89–0.96). Although the reliability of power capacity was similar for the R1–R4 2-point method (CV: 3.18%; ICC: 0.96) and the standard test (CV: 3.31%; ICC: 0.95), the 2-point method should be recommended because it also reveals maximum force and velocity capacities. Finally, we conclude that the 2-point method in cycling should be based on 2 distant resistive forces, but avoiding cadences below 110 rpm.

Restricted access

Francisco Luis Pestaña-Melero, G. Gregory Haff, Francisco Javier Rojas, Alejandro Pérez-Castilla and Amador García-Ramos

This study aimed to compare the between-session reliability of the load–velocity relationship between (1) linear versus polynomial regression models, (2) concentric-only versus eccentric–concentric bench press variants, as well as (3) the within-participants versus the between-participants variability of the velocity attained at each percentage of the 1-repetition maximum. The load–velocity relationship of 30 men (age: 21.2 [3.8] y; height: 1.78 [0.07] m, body mass: 72.3 [7.3] kg; bench press 1-repetition maximum: 78.8 [13.2] kg) were evaluated by means of linear and polynomial regression models in the concentric-only and eccentric–concentric bench press variants in a Smith machine. Two sessions were performed with each bench press variant. The main findings were: (1) first-order polynomials (coefficient of variation: 4.39%–4.70%) provided the load–velocity relationship with higher reliability than the second-order polynomials (coefficient of variation: 4.68%–5.04%); (2) the reliability of the load–velocity relationship did not differ between the concentric-only and eccentric–concentric bench press variants; and (3) the within-participants variability of the velocity attained at each percentage of the 1-repetition maximum was markedly lower than the between-participants variability. Taken together, these results highlight that, regardless of the bench press variant considered, the individual determination of the load–velocity relationship by a linear regression model could be recommended to monitor and prescribe the relative load in the Smith machine bench press exercise.

Restricted access

Alejandro Pérez-Castilla, Belén Feriche, Slobodan Jaric, Paulino Padial and Amador García-Ramos

This study aimed to examine the validity of mechanical variables obtained by a linear velocity transducer from the unconstrained and constrained squat jump (SJ). Twenty-three men were tested on the unconstrained SJ and the SJ constrained by a Smith machine. Maximum values of force, velocity, and power were simultaneously recorded both by a linear velocity transducer attached to a bar of mass of 17, 30, 45, 60, and 75 kg and by a force plate. Linear velocity transducer generally overestimated the outcomes measured as compared to the force plate, particularly in unconstrained SJ. Bland-Altman plots revealed that heteroscedasticity of errors was mainly observed for velocity variables (r 2 = .26–.58) where the differences were negatively associated with the load magnitude. However, exceptionally high correlations were observed between the same outcomes recorded with the 2 methods in both unconstrained (median r = .89 [.71–.95]) and constrained SJ (r = .90 [.65–.95]). Although the systematic and proportional bias needs to be acknowledged, the high correlations between the variables obtained by 2 methods suggest that the linear velocity transducer could provide valid values of the force, velocity, and power outputs from both unconstrained and constrained SJ.

Restricted access

Amador García-Ramos, Francisco Luis Pestaña-Melero, Alejandro Pérez-Castilla, Francisco Javier Rojas and Guy Gregory Haff

Purpose: To compare the load–velocity relationship between 4 variants of the bench-press (BP) exercise. Methods: The full load–velocity relationship of 30 men was evaluated by means of an incremental loading test starting at 17 kg and progressing to the individual 1-repetition maximum (1RM) in 4 BP variants: concentric-only BP, concentric-only BP throw (BPT), eccentric-concentric BP, and eccentric-concentric BPT. Results: A strong and fairly linear relationship between mean velocity (MV) and %1RM was observed for the 4 BP variants (r 2 > .96 for pooled data and r 2 > .98 for individual data). The MV associated with each %1RM was significantly higher in the eccentric-concentric technique than in the concentric-only technique. The only significant difference between the BP and BPT variants was the higher MV with the light to moderate loads (20–70%1RM) in the BPT using the concentric-only technique. MV was significantly and positively correlated between the 4 BP variants (r = .44–.76), which suggests that the subjects with higher velocities for each %1RM in 1 BP variant also tend to have higher velocities for each %1RM in the 3 other BP variants. Conclusions: These results highlight the need for obtaining specific equations for each BP variant and the existence of individual load–velocity profiles.

Restricted access

Amador García-Ramos, Alejandro Torrejón, Belén Feriche, Antonio J. Morales-Artacho, Alejandro Pérez-Castilla, Paulino Padial and Guy Gregory Haff

Purpose: To provide 2 general equations to estimate the maximum possible number of repetitions (XRM) from the mean velocity (MV) of the barbell and the MV associated with a given number of repetitions in reserve, as well as to determine the between-sessions reliability of the MV associated with each XRM. Methods: After determination of the bench-press 1-repetition maximum (1RM; 1.15 ± 0.21 kg/kg body mass), 21 men (age 23.0 ± 2.7 y, body mass 72.7 ± 8.3 kg, body height 1.77 ± 0.07 m) completed 4 sets of as many repetitions as possible against relative loads of 60%1RM, 70%1RM, 80%1RM, and 90%1RM over 2 separate sessions. The different loads were tested in a randomized order with 10 min of rest between them. All repetitions were performed at the maximum intended velocity. Results: Both the general equation to predict the XRM from the fastest MV of the set (CV = 15.8–18.5%) and the general equation to predict MV associated with a given number of repetitions in reserve (CV = 14.6–28.8%) failed to provide data with acceptable between-subjects variability. However, a strong relationship (median r 2 = .984) and acceptable reliability (CV < 10% and ICC > .85) were observed between the fastest MV of the set and the XRM when considering individual data. Conclusions: These results indicate that generalized group equations are not acceptable methods for estimating the XRM–MV relationship or the number of repetitions in reserve. When attempting to estimate the XRM–MV relationship, one must use individualized relationships to objectively estimate the exact number of repetitions that can be performed in a training set.

Restricted access

Alejandro Pérez-Castilla, Antonio Piepoli, Gabriel Garrido-Blanca, Gabriel Delgado-García, Carlos Balsalobre-Fernández and Amador García-Ramos

Objective: To compare the accuracy of different devices to predict the bench-press 1-repetition maximum (1RM) from the individual load–velocity relationship modeled through the multiple- and 2-point methods. Methods: Eleven men performed an incremental test on a Smith machine against 5 loads (45–55–65–75–85%1RM), followed by 1RM attempts. The mean velocity was simultaneously measured by 1 linear velocity transducer (T-Force), 2 linear position transducers (Chronojump and Speed4Lift), 1 camera-based optoelectronic system (Velowin), 2 inertial measurement units (PUSH Band and Beast Sensor), and 1 smartphone application (My Lift). The velocity recorded at the 5 loads (45–55–65–75–85%1RM), or only at the 2 most distant loads (45–85%1RM), was considered for the multiple- and 2-point methods, respectively. Results: An acceptable and comparable accuracy in the estimation of the 1RM was observed for the T-Force, Chronojump, Speed4Lift, Velowin, and My Lift when using both the multiple- and 2-point methods (effect size ≤ 0.40; Pearson correlation coefficient [r] ≥ .94; standard error of the estimate [SEE] ≤ 4.46 kg), whereas the accuracy of the PUSH (effect size = 0.70–0.83; r = .93–.94; SEE = 4.45–4.80 kg), and especially the Beast Sensor (effect size = 0.36–0.84; r = .50–.68; SEE = 9.44–11.2 kg), was lower. Conclusions: These results highlight that the accuracy of 1RM prediction methods based on movement velocity is device dependent, with the inertial measurement units providing the least accurate estimate of the 1RM.

Restricted access

Amador García-Ramos, Guy Gregory Haff, Francisco Luis Pestaña-Melero, Alejandro Pérez-Castilla, Francisco Javier Rojas, Carlos Balsalobre-Fernández and Slobodan Jaric

Purpose: This study compared the concurrent validity and reliability of previously proposed generalized group equations for estimating the bench press (BP) 1-repetition maximum (1RM) with the individualized load–velocity relationship modeled with a 2-point method. Methods: Thirty men (BP 1RM relative to body mass: 1.08 [0.18] kg·kg−1) performed 2 incremental loading tests in the concentric-only BP exercise and another 2 in the eccentric–concentric BP exercise to assess their actual 1RM and load–velocity relationships. A high velocity (≈1 m·s−1) and a low velocity (≈0.5 m·s−1) were selected from their load–velocity relationships to estimate the 1RM from generalized group equations and through an individual linear model obtained from the 2 velocities. Results: The directly measured 1RM was highly correlated with all predicted 1RMs (r = .847–.977). The generalized group equations systematically underestimated the actual 1RM when predicted from the concentric-only BP (P < .001; effect size = 0.15–0.94) but overestimated it when predicted from the eccentric–concentric BP (P < .001; effect size = 0.36–0.98). Conversely, a low systematic bias (range: −2.3 to 0.5 kg) and random errors (range: 3.0–3.8 kg), no heteroscedasticity of errors (r 2 = .053–.082), and trivial effect size (range: −0.17 to 0.04) were observed when the prediction was based on the 2-point method. Although all examined methods reported the 1RM with high reliability (coefficient of variation ≤ 5.1%; intraclass correlation coefficient  ≥ .89), the direct method was the most reliable (coefficient of variation < 2.0%; intraclass correlation coefficient ≥ .98). Conclusions: The quick, fatigue-free, and practical 2-point method was able to predict the BP 1RM with high reliability and practically perfect validity, and therefore, the authors recommend its use over generalized group equations.