Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Alexandre Durguerian x
Clear All Modify Search
Restricted access

Marina Fabre, Christophe Hausswirth, Eve Tiollier, Odeline Molle, Julien Louis, Alexandre Durguerian, Nathalie Neveux and Xavier Bigard

While effects of the two classes of proteins found in milk (i.e., soluble proteins, including whey, and casein) on muscle protein synthesis have been well investigated after a single bout of resistance exercise (RE), the combined effects of these two proteins on the muscle responses to resistance training (RT) have not yet been investigated. Therefore, the aim of this study was to examine the effects of protein supplementation varying by the ratio between milk soluble proteins (fast-digested protein) and casein (slow-digested protein) on the muscle to a 9-week RT program. In a double-blind protocol, 31 resistance-trained men, were assigned to 3 groups receiving a drink containing 20g of protein comprising either 100% of fast protein (FP(100), n = 10), 50% of fast and 50% of slow proteins (FP(50), n = 11) or 20% of fast protein and 80% of casein (FP(20), n = 10) at the end of training bouts. Body composition (DXA), and maximal strength in dynamic and isometric were analyzed before and after RT. Moreover, blood plasma aminoacidemia kinetic after RE was measured. The results showed a higher leucine bioavailability after ingestion of FP(100) and FP(50) drinks, when compared with FP(20) (p< .05). However, the RT-induced changes in lean body mass (p < .01), dynamic (p < .01), and isometric muscle strength (p < .05) increased similarly in all experimental groups. To conclude, compared with the FP(20) group, the higher rise in plasma amino acids following the ingestion of FP(100) and FP(50) did not lead to higher muscle long-term adaptations.

Restricted access

Bruno Marrier, Alexandre Durguerian, Julien Robineau, Mounir Chennaoui, Fabien Sauvet, Aurélie Servonnet, Julien Piscione, Bertrand Mathieu, Alexis Peeters, Mathieu Lacome, Jean-Benoit Morin and Yann Le Meur

Purpose: Preconditioning strategies are considered opportunities to optimize performance on competition day. Although investigations conducted in rugby players on the effects of a morning preconditioning session have been done, additional work is warranted. The aim of this study was to monitor changes in physical and psychophysiological indicators among international Rugby-7s players after a priming exercise. Methods: In a randomized crossover design, 14 under-18 international Rugby-7s players completed, at 8:00 AM, a preconditioning session consisting of a warm-up followed by small-sided games, accelerations, and 2 × 50-m maximal sprints (Experimental), or no preloading session (Control). After a 2-h break, the players performed a set of six 30-m sprints and a Rugby-7s match. Recovery–stress state and salivary stress-marker levels were assessed before the preloading session (Pre), immediately after the preloading session (Post 1), before the testing session (Post 2), and after the testing session (Post 3). Results: Experimental–Control differences in performance across a repeated-sprint test consisting of six 30-m sprints were very likely trivial (+0.2, ±0.7%, 3/97/1%). During the match, the total distance covered and the frequency of decelerations were possibly lower (small) in Experimental compared with Control. Differences observed in the other parameters were unclear or possibly trivial. At Post 2, the perceived recovery–stress state was improved (small difference) in Experimental compared with Control. No difference in salivary cortisol response was observed, while the preconditioning session induced a higher stimulation of salivary testosterone and α-amylase. Conclusions: The players’ ability to repeat sprints and physical activity in match play did not improve, but their psychophysiological state was positively affected after the present preconditioning session.