Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Alisa Nana x
Clear All Modify Search
Restricted access

Alisa Nana, Gary J. Slater, Will G. Hopkins and Louise M. Burke

Dual-energy X-ray absorptiometry (DXA) is becoming a popular tool to measure body composition, owing to its ease of operation and comprehensive analysis. However, some people, especially athletes, are taller and/or broader than the active scanning area of the DXA bed and must be scanned in sections. The aim of this study was to investigate the reliability of DXA measures of whole-body composition summed from 2 or 3 partial scans. Physically active young adults (15 women, 15 men) underwent 1 whole-body and 4 partial DXA scans in a single testing session under standardized conditions. The partial scanning areas were head, whole body from the bottom of the chin down, and right and left sides of the body. Body-composition estimates from whole body were compared with estimates from summed partial scans to simulate different techniques to accommodate tall and/or broad subjects relative to the whole-body scan. Magnitudes of differences in the estimates were assessed by standardization. In simulating tall subjects, summation of partial scans that included the head scan overestimated whole-body composition by ~3 kg of lean mass and ~1 kg of fat mass, with substantial technical error of measurement. In simulating broad subjects, summation of right and left body scans produced no substantial differences in body composition than those of the whole-body scan. Summing partial DXA scans provides accurate body-composition estimates for broad subjects, but other strategies are needed to accommodate tall subjects.

Restricted access

Alisa Nana, Gary J. Slater, Arthur D. Stewart and Louise M. Burke

Dual energy X-ray absorptiometry (DXA) is rapidly becoming more accessible and popular as a technique to monitor body composition, especially in athletic populations. Although studies in sedentary populations have investigated the validity of DXA assessment of body composition, few studies have examined the issues of reliability in athletic populations and most studies which involve DXA measurements of body composition provide little information on their scanning protocols. This review presents a summary of the sources of error and variability in the measurement of body composition by DXA, and develops a theoretical model of best practice to standardize the conduct and analysis of a DXA scan. Components of this protocol include standardization of subject presentation (subjects rested, overnight-fasted and in minimal clothing) and positioning on the scanning bed (centrally aligned in a standard position using custom-made positioning aids) as well as manipulation of the automatic segmentation of regional areas of the scan results. Body composition assessment implemented with such protocol ensures a high level of precision, while still being practical in an athletic setting. This ensures that any small changes in body composition are confidently detected and correctly interpreted. The reporting requirements for studies involving DXA scans of body composition include details of the DXA machine and software, subject presentation and positioning protocols, and analysis protocols.

Restricted access

Alisa Nana, Gary J. Slater, Will G. Hopkins, Shona L. Halson, David T. Martin, Nicholas P. West and Louise M. Burke

Purpose:

The implications of undertaking DXA scans using best practice protocols (subjects fasted and rested) or a less precise but more practical protocol in assessing chronic changes in body composition following training and a specialized recovery technique were investigated.

Methods:

Twenty-one male cyclists completed an overload training program, in which they were randomized to four sessions per week of either cold water immersion therapy or control groups. Whole-body DXA scans were undertaken with best practice protocol (Best) or random activity protocol (Random) at baseline, after 3 weeks of overload training, and after a 2-week taper. Magnitudes of changes in total, lean and fat mass from baseline-overload, overload-taper and baseline-taper were assessed by standardization (Δmean/SD).

Results:

The standard deviations of change scores for total and fat-free soft tissue mass (FFST) from Random scans (2–3%) were approximately double those observed in the Best (1–2%), owing to extra random errors associated with Random scans at baseline. There was little difference in change scores for fat mass. The effect of cold water immersion therapy on baseline-taper changes in FFST was possibly harmful (-0.7%; 90% confidence limits ±1.2%) with Best scans but unclear with Random scans (0.9%; ±2.0%). Both protocols gave similar possibly harmful effects of cold water immersion therapy on changes in fat mass (6.9%; ±13.5% and 5.5%; ±14.3%, respectively).

Conclusions:

An interesting effect of cold water immersion therapy on training-induced changes in body composition might have been missed with a less precise scanning protocol. DXA scans should be undertaken with Best.

Restricted access

Eric C. Haakonssen, Megan L. Ross, Louise E. Cato, Alisa Nana, Emma J. Knight, David G. Jenkins, David T. Martin and Louise M. Burke

Some athletes avoid dairy in the meal consumed before exercise due to fears about gastrointestinal discomfort. Regular exclusion of dairy foods may unnecessarily reduce intake of high quality proteins and calcium with possible implications for body composition and bone health. This study compared the effects of meals that included (Dairy) or excluded (Control) dairy foods on gastric comfort and subsequent cycling performance. Well-trained female cyclists (n = 32; mean ± SD; 24.3 ± 4.1 y; VO2peak 57.1 ± 4.9 ml/kg/min) completed two trials (randomized cross-over design) in which they consumed a meal (2 g/kg carbohydrate and 54 kJ/kg) 2 hr before a 90-min cycle session (80 min at 60% maximal aerobic power followed by a 10-min time trial; TT). The dairy meal contained 3 servings of dairy foods providing ~1350 mg calcium. Gut comfort and palatability were measured using questionnaires. Performance was measured as maximum mean power during the TT (MMP10min). There was no statistical or clinical evidence of an effect of meal type on MMP10min with a mean difference (Dairy – Control) of 4 W (95% CI [–2, 9]). There was no evidence of an association between pretrial gut comfort and meal type (p = .15) or between gut comfort delta scores and meal type postmeal (p = .31), preexercise (p = .17) or postexercise (p = .80). There was no statistical or clinical evidence of a difference in palatability between meal types. In summary, substantial amounts of dairy foods can be included in meals consumed before strenuous cycling without impairing either gut comfort or performance.