Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Amy Jones x
Clear All Modify Search
Restricted access

Samuel Todd, Marshall Magnusen, Tony Lachowetz and Amy Jones

Restricted access

Kevin Till, Ben Jones, John O’Hara, Matthew Barlow, Amy Brightmore, Matthew Lees and Karen Hind


To compare the body size and 3-compartment body composition between academy and senior professional rugby league players using dual-energy X-ray absorptiometry (DXA).


Academy (age 18.1 ± 1.1 y, n = 34) and senior (age 26.2 ± 4.6 y, n = 63) rugby league players received 1 total-body DXA scan. Height, body mass, and body-fat percentage alongside total and regional fat mass, lean mass, and bone mineral content (BMC) were compared. Independent t tests with Cohen d effect sizes and multivariate analysis of covariance (MANCOVA), controlling for height and body mass, with partial eta-squared (η2) effect sizes, were used to compare total and regional body composition.


Senior players were taller (183.2 ± 5.8 vs 179.2 ± 5.7 cm, P = .001, d = 0.70) and heavier (96.5 ± 9.3 vs 86.5 ± 9.0 kg, P < .001, d = 1.09) with lower body-fat percentage (16.3 ± 3.7 vs 18.0 ± 3.7%, P = .032, d = 0.46) than academy players. MANCOVA identified significant overall main effects for total and regional body composition between academy and senior players. Senior players had lower total fat mass (P < .001, η 2 = 0.15), greater total lean mass (P < .001, η 2 = 0.14), and greater total BMC (P = .001, η 2 = 0.12) than academy players. For regional sites, academy players had significantly greater fat mass at the legs (P < .001, η 2 = 0.29) than senior players.


The lower age, height, body mass, and BMC of academy players suggest that these players are still developing musculoskeletal characteristics. Gradual increases in lean mass and BMC while controlling fat mass is an important consideration for practitioners working with academy rugby league players, especially in the lower body.

Restricted access

Paul Comfort, Amy Regan, Lee Herrington, Chris Thomas, John McMahon and Paul Jones


Regular performance (~2×/wk) of Nordic curls has been shown to increase hamstring strength and reduce the risk of hamstring strain injury, although no consensus on ankle position has been provided.


To compare the effects of performing Nordic curls, with the ankle in a dorsiflexed (DF) or plantar-flexed (PF) position, on muscle activity of the biceps femoris (BF) and medial gastrocnemius (MG).


15 male college athletes (age 22.6 ± 2.1 y, height 1.78 ± 0.06 m, body mass 88.75 ± 8.95 kg).


A repeated-measures design was used, with participants performing 2 sets of 3 repetitions of both variations of Nordic curls, while muscle activity was assessed via surface electromyography (EMG) of the BF and MG. Comparisons of muscle activity were made by examining the normalized EMG data as the percentage of their maximum voluntary isometric contraction.


Paired-samples t test revealed no significant difference in normalized muscle activity of the BF (124.5% ± 6.2% vs 128.1 ± 5.0%, P > .05, Cohen d = 0.64, power = .996) or MG (82.1% ± 3.9% vs 83.5 ± 4.8%, P > .05, Cohen d = 0.32, power = .947) during the Nordic curls in a PF or DF position, respectively.


Ankle position does not influence muscle activity during the Nordic curl; however, performance of Nordic curls with the ankle in a DF position may be preferential, as this replicates the ankle position during terminal leg swing during running, which tends to be the point at which hamstring strains have been reported.

Restricted access

Amy Meltzer Rady, Brenda Segall, Antoinette Tiburzi, Ann E. Jewett and L. Sue Jones