Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Ana L. Gómez x
Clear All Modify Search
Restricted access

Jeff S. Volek, Noel D. Duncan, Scott A. Mazzetti, Margot Putukian, Ana L. Gómez and William J. Kraemer

In order to examine the effects of heavy resistance training and the influence of creatine supplementation on nonperformance measures of health status, 19 healthy resistance-trained men were matched and then randomly assigned in a double-blind fashion to either a creatine (n = 10) or placebo (n = 9) group. Periodized heavy resistance training was performed 3—4 times per week for 12 weeks. During the first week of training, creatine subjects consumed 25 g creatine monohydrate per day, while the placebo group ingested an equal number of placebo capsules. Five grams of supplement per day was consumed for the remainder of the study. Body composition, fasting serum creatinine, lipo-proteins and triglycerides, and reported changes in body function were determined prior to and after 12 weeks of training and supplementation. After training, significant increases in body mass and fat-free mass were greater in creatine (5.2 and 4.3 kg, respectively) than placebo (3.0 and 2.1 kg. respectively) subjects. There was no change in percent body fat. Dietary energy and macronutrient distribution was not significantly different during Weeks 1 and 12. Serum creatinine was significantly elevated in creatine subjects after 1(11.6%) and 12 weeks (13.8%); however, values were within normal limits for healthy men. There were no effects of training or supplementation on serum total cholesterol, HDL-cholesterol, LDL-cholesterol. or triglycerides. In healthy men, a 12-week heavy resistance training program, with or without creatine supplementation, did not significantly influence serum lipid profiles, subjective reports of body functioning, or serum creatinine concentrations.

Restricted access

Jesse Fleming, Matthew J. Sharman, Neva G. Avery, Dawn M. Love, Ana L. Gómez, Timothy P. Scheett, William J. Kraemer and Jeff S. Volek

The effects of adaptation to a high-fat diet on endurance performance are equivocal, and there is little data regarding the effects on high-intensity exercise performance. This study examined the effects of a high-fat/moderate protein diet on submaximal, maximal, and supramaximal performance. Twenty non-highly trained men were assigned to either a high-fat/moderate-protein (HFMP; 61% fat) diet (n = 12) or a control (C; 25% fat) group (n = 8). A maximal oxygen consumption test, two 30-s Wingate anaerobic tests, and a 45-min timed ride were performed before and after 6 weeks of diet and training. Body mass decreased significantly (–2.2 kg; p ≤ .05) in HFMP subjects. Maximal oxygen consumption significantly decreased in the HFMP group (3.5 ± 0.14 to 3.27 ± 0.09 L · min−1) but was unaffected when corrected for body mass. Perceived exertion was significantly higher during this test in the HFMP group. Main time effects indicated that peak and mean power decreased significantly during bout 1 of the Wingate sprints in the HFMP (–10 and –20%, respectively) group but not the C (–8 and –16%, respectively) group. Only peak power was lower during bout 1 in the HFMP group when corrected for body mass. Despite significantly reduced RER values in the HFMP group during the 45-min cycling bout, work output was significantly decreased (–18%). Adaptation to a 6-week HFMP diet in non-highly trained men resulted in increased fat oxidation during exercise and small decrements in peak power output and endurance performance. These deleterious effects on exercise performance may be accounted for in part by a reduction in body mass and/or increased ratings of perceived exertion.

Restricted access

William J. Kraemer, Jill A. Bush, Robbin B. Wickham, Craig R. Denegar, Ana L. Gomez, Lincoln A. Gotshalk, Noel D. Duncan, Jeff S. Volek, Robert U. Newton, Margot Putukian and Wayne J. Sebastianelli

Context:

Prior investigations using ice, massage, or exercise have not shown efficacy in relieving delayed-onset muscle soreness.

Objectives:

To determine whether a compression sleeve worn immediately after maximal eccentric exercise enhances recovery.

Design:

Randomized, controlled clinical study.

Setting:

University sports medicine laboratory.

Participants:

Fifteen healthy, non-strength-trained men, matched for physical criteria, randomly placed in a control group or a continuous compression-sleeve group (CS).

Methods and Measures:

Subjects performed 2 sets of 50 arm curls. 1RM elbow flexion at 60°/s, upper-arm circumference, resting-elbow angle, serum creatine kinase (CK), and perception-of-soreness data were collected before exercise and for 3 days.

Results:

CK was significantly (P < .05) elevated from the baseline value in both groups, although the elevation in the CS group was less. CS prevented loss of elbow extension, decreased subjects’ perception of soreness, reduced swelling, and promoted recovery of force production.

Conclusions:

Compression is important in soft-tissue-injury management.

Restricted access

William J. Kraemer, Ana L. Gómez, Nicholas A. Ratamess, Jay R. Hoffman, Jeff S. Volek, Martyn R. Rubin, Timothy P. Scheett, Michael R. McGuigan, Duncan French, Jaci L. VanHeest, Robbin B. Wickham, Brandon Doan, Scott A. Mazzetti, Robert U. Newton and Carl M. Maresh

Objective:

To determine the effects of Vicoprofen®, ibuprofen, and placebo on anaerobic performance and pain relief after resistance-exercise-induced muscle damage.

De-sign:

Randomized, controlled clinical study.

Setting:

University human-performance/sports-medicine laboratory.

Participants:

36 healthy men.

Methods and Measures:

After baseline testing (72 h), participants performed an eccentric-exercise protocol. Each was evaluated for pain 24 h later and randomly assigned to a Vicoprofen (VIC), ibuprofen (IBU), or placebo (P) group. Postexercise testing was performed every 24 h for 4 d.

Results:

Significantly greater muscle force, power, and total work were observed in VIC than in P (P < .05) for most time points and for IBU at 48 h.

Conclusions:

Anaerobic performance is enhanced with VIC, especially within the first 24 h after significant muscle-tissue damage. The greater performances observed at 48 h might be a result of less damage at this time point with VIC treatment.