Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Andrea J. Braakhuis x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Hannah Bond, Lillian Morton, and Andrea J. Braakhuis

Increased plasma nitrate concentrations from dietary sources of nitrate have proven to benefit exercise performance. Beetroot (BR) contains relatively high levels of nitrate (NO3 ), which increases nitric oxide stores. This study investigated whether dietary nitrate supplementation, in the form of a BR beverage, would improve rowing performance during ergometer repetitions. In a randomized crossover design, 14 well-trained junior male rowers consumed 500 ml of either BR or placebo (PL) daily for 6 d. After supplementation, rowers completed 6 maximal 500-m ergometer repetitions and times were recorded. A 7-d washout period separated the 2 trials. Blood pressure, oxygen saturation, maximum heart rate, urine (specific gravity, pH, and nitrites), and lactates were collected for analysis at baseline and pre- and postperformance. Changes in the mean with 95% confidence limits were calculated. There was a likely benefit to average repetition time in the BR condition, compared with PL (0.4%, 95% confidence limits, ± 1.0%). In particular, Repetitions 4–6 showed an almost certain benefit in rowing time on BR (1.7%, 95% CL, ± 1.0%). The underlying mechanism for the observed results remains unknown, as differences observed in rowers’ physiological measures between the 2 conditions were unclear. Conclusively, nitrate supplementation in the form of BR juice resulted in improved maximal rowing-ergometer repetitions, particularly in the later stages of exercise.

Restricted access

Andrea J. Braakhuis, Will G. Hopkins, and Timothy E. Lowe

The beneficial effects of exercise and a healthy diet are well documented in the general population but poorly understood in elite athletes. Previous research in subelite athletes suggests that regular training and an antioxidant-rich diet enhance antioxidant defenses but not performance.


To investigate whether habitual diet and/or exercise (training status or performance) affect antioxidant status in elite athletes.


Antioxidant blood biomarkers were assessed before and after a 30-min ergometer time trial in 28 male and 34 female rowers. The antioxidant blood biomarkers included ascorbic acid, uric acid, total antioxidant capacity (TAC), erythrocyte- superoxide dismutase, glutathione peroxidase (GPx), and catalase. Rowers completed a 7-d food diary and an antioxidant-intake questionnaire. Effects of diet, training, and performance on resting biomarkers were assessed with Pearson correlations, and their effect on exercise-induced changes in blood biomarkers was assessed by a method of standardization.


With the exception of GPx, there were small to moderate increases with exercise for all markers. Blood resting TAC had a small correlation with total antioxidant intake (correlation .29; 90% confidence limits, ±.27), and the exercise-induced change in TAC had a trivial to small association with dietary antioxidant intake from vitamin C (standardized effect .19; ±.22), vegetables (.20; ±.23), and vitamin A (.25; ±.27). Most other dietary intakes had trivial associations with antioxidant biomarkers. Years of training had a small inverse correlation with TAC (−.32; ±.19) and a small association with the exercise-induced change in TAC (.27; ±.24).


Training status correlates more strongly with antioxidant status than diet does.

Restricted access

Andrea J. Braakhuis, Kelly Meredith, Gregory R. Cox, William G. Hopkins, and Louise M. Burke

A routine activity for a sports dietitian is to estimate energy and nutrient intake from an athlete’s self-reported food intake. Decisions made by the dietitian when coding a food record are a source of variability in the data. The aim of the present study was to determine the variability in estimation of the daily energy and key nutrient intakes of elite athletes, when experienced coders analyzed the same food record using the same database and software package. Seven-day food records from a dietary survey of athletes in the 1996 Australian Olympic team were randomly selected to provide 13 sets of records, each set representing the self-reported food intake of an endurance, team, weight restricted, and sprint/power athlete. Each set was coded by 3–5 members of Sports Dietitians Australia, making a total of 52 athletes, 53 dietitians, and 1456 athlete-days of data. We estimated within- and between- athlete and dietitian variances for each dietary nutrient using mixed modeling, and we combined the variances to express variability as a coefficient of variation (typical variation as a percent of the mean). Variability in the mean of 7-day estimates of a nutrient was 2- to 3-fold less than that of a single day. The variability contributed by the coder was less than the true athlete variability for a 1-day record but was of similar magnitude for a 7-day record. The most variable nutrients (e.g., vitamin C, vitamin A, cholesterol) had ~3-fold more variability than least variable nutrients (e.g., energy, carbohydrate, magnesium). These athlete and coder variabilities need to be taken into account in dietary assessment of athletes for counseling and research.

Restricted access

Andrea J. Braakhuis, Will G. Hopkins, Timothy E. Lowe, and Elaine C. Rush

A quantitative food-frequency questionnaire (FFQ) was developed to determine antioxidant intake in athletes. The questionnaire will be valuable for researchers wishing to standardize antioxidant intake or simply document habitual intake during an intervention trial. One hundred thirteen athletes participated in the validity study, of whom 96 completed the questionnaire and blood test, 81 completed the 7-d food diary and questionnaire, and 63 completed the 7-d food diary and blood test. Validity was investigated by comparing total and food-group antioxidant intakes from the questionnaire with those from a subsequent 7-d food diary. Measures of construct validity were determined by comparing a biomarker of antioxidant capacity (ferric-reducing ability of plasma) in a blood sample with antioxidant intakes from the questionnaire and diary. The correlation between the diary and questionnaire energy-adjusted estimates of total antioxidant intake was modest (.38; 90% confidence limits, ± .14); the correlation was highest for antioxidants from cereals (.55; ± .11), which contributed the greatest proportion (31%) of the total antioxidant intake. Correlations were also high for coffee and tea (.51; ± .15) and moderate for vegetables (.34; ± .16) and fruit (.31; ± .16). The correlation of the plasma biomarker with the questionnaire estimate was small (.28; ± .15), but the correlation with the diary estimate was inconsequential (–.03; ± .15). One-week test–retest reliability of the questionnaire’s estimates of antioxidant intake in 20 participants was high (.83; ± .16). In conclusion, the FFQ is less labor intensive for participants and researchers than a 7-d diary and appears to be at least as trustworthy for estimating antioxidant intake.