Search Results

You are looking at 1 - 10 of 26 items for

  • Author: Andrew E. Kilding x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Andrew E. Kilding, Claire Overton, and Jonathan Gleave

Purpose:

To determine the effects of ingesting caffeine (CAFF) and sodium bicarbonate (SB), taken individually and simultaneously, on 3-km cycling time-trial (TT) performance.

Method:

Ten well-trained cyclists, age 24.2 ± 5.4 yr, participated in this acute-treatment, double-blind, crossover study that involved four 3-km cycling TTs performed on separate days. Before each TT, participants ingested either 3 mg/kg body mass (BM) of CAFF, 0.3 g · kg−1 · BM−1 of SB, a combination of the two (CAFF+SB), or a placebo (PLAC). They completed each 3-km TT on a laboratory-based cycle ergometer, during which physiological, perceptual, and performance measurements were determined. For statistical analysis, the minimal worthwhile difference was considered ~1% based on previous research.

Results:

Pretrial pH and HCO3 were higher in SB and CAFF+SB than in the CAFF and PLAC trials. Differences across treatments for perceived exertion and gastric discomfort were mostly unclear. Compared with PLAC, mean power output during the 3-km TT was higher in CAFF, SB, and CAFF+SB trials (2.4%, 2.6%, 2.7% respectively), resulting in faster performance times (–0.9, –1.2, –1.2% respectively). Effect sizes for all trials were small (0.21–0.24).

Conclusions:

When ingested individually, both CAFF and SB enhance high-intensity cycling TT performance in trained cyclists. However, the ergogenic effect of these 2 popular supplements was not additive, bringing into question the efficacy of coingesting the 2 supplements before short-duration high-intensity exercise. In this study there were no negative effects of combining CAFF and SB, 2 relatively inexpensive and safe supplements.

Restricted access

Jeremy Williams, Grant Abt, and Andrew E. Kilding

Purpose:

To determine the effects of acute short-term creatine (Cr) supplementation on physical performance during a 90-min soccer-specific performance test.

Methods:

A double-blind, placebo-controlled experimental design was adopted during which 16 male amateur soccer players were required to consume 20 g/d Cr for 7 d or a placebo. A Ball-Sport Endurance and Speed Test (BEAST) comprising measures of aerobic (circuit time), speed (12- and 20-m sprint), and explosive-power (vertical jump) abilities performed over 90 min was performed presupplementation and postsupplementation.

Results:

Performance measures during the BEAST deteriorated during the second half relative to the first for both Cr (1.2–2.3%) and placebo (1.0–2.2%) groups, indicating a fatigue effect associated with the BEAST. However, no significant differences existed between groups, suggesting that Cr had no performance-enhancing effect or ability to offset fatigue. When effect sizes were considered, some measures (12-m sprint, –0.53 ± 0.69; 20-m sprint, –0.39 ± 0.59) showed a negative tendency, indicating chances of harm were greater than chances of benefit.

Conclusions:

Acute short-term Cr supplementation has no beneficial effect on physical measures obtained during a 90-min soccer-simulation test, thus bringing into question its potential as an effective ergogenic aid for soccer players.

Restricted access

Darrell L. Bonetti, Will G. Hopkins, and Andrew E. Kilding

Context:

Live-high train-low altitude training produces worthwhile gains in performance for endurance athletes, but the benefits of adaptation to various forms of artificial altitude are less clear.

Purpose:

To quantify the effects of intermittent hypoxic exposure on kayak performance.

Methods:

In a crossover design with a 6-week washout, we randomized 10 subelite male sprint kayak paddlers to hypoxia or control groups for 3 weeks (5 days/week) of intermittent hypoxic exposure using a nitrogen-filtration device. Each day's exposure consisted of alternately breathing hypoxic and ambient air for 5 minutes each over 1 hour. Performance tests were an incremental step test to estimate peak power, maximal oxygen uptake, exercise economy, and lactate threshold; a 500-m time trial; and 5 × 100-m sprints. All tests were performed on a wind-braked kayak ergometer 7 and 3 days pretreatment and 3 and 10 days post treatment. Hemoglobin concentration was measured at 1 day pretreatment, 5 and 10 days during treatment, and 3 days after treatment.

Results:

Relative to control, at 3 days post treatment the hypoxia group showed the following increases: peak power 6.8% (90% confidence limits, ± 5.2%), mean repeat sprint power 8.3% (± 6.7%), and hemoglobin concentration 3.6% (± 3.2%). Changes in lactate threshold, mean 500-m power, maximal oxygen uptake, and exercise economy were unclear. Large effects for peak power and mean sprint speed were still present 10 days posthypoxia.

Conclusion:

These effects of intermittent hypoxic exposure should enhance performance in kayak racing. The effects might be mediated via changes in oxygen transport.

Restricted access

Ed Maunder, Daniel J. Plews, Fabrice Merien, and Andrew E. Kilding

Many endurance athletes perform specific blocks of training in hot environments in “heat stress training camps.” It is not known if physiological threshold heart rates measured in temperate conditions are reflective of those under moderate environmental heat stress. A total of 16 endurance-trained cyclists and triathletes performed incremental exercise assessments in 18°C and 35°C (both 60% relative humidity) to determine heart rates at absolute blood lactate and ventilatory thresholds. Heart rate at fixed blood lactate concentrations of 2, 3, and 4 mmol·L−1 and ventilatory thresholds were not significantly different between environments (P > .05), despite significant heat stress-induced reductions in power output of approximately 10% to 17% (P < .05, effect size = 0.65–1.15). The coefficient of variation for heart rate at these blood lactate concentrations (1.4%−2.9%) and ventilatory thresholds (2.3%−2.7%) between conditions was low, with significant strong positive correlations between measurements in the 2 environments (r = .92–.95, P < .05). These data indicate heart rates measured at physiological thresholds in temperate environments are reflective of measurements taken under moderate environmental heat stress. Therefore, endurance athletes embarking on heat stress training camps can use heart rate–based thresholds ascertained in temperate environments to prescribe training under moderate environmental heat stress.

Restricted access

Jeffrey A. Rothschild, Andrew E. Kilding, and Daniel J. Plews

Athletes may choose to perform exercise in the overnight-fasted state for a variety of reasons related to convenience, gut comfort, or augmenting the training response, but it is unclear how many endurance athletes use this strategy. We investigated the prevalence and determinants of exercise performed in the overnight-fasted state among endurance athletes using an online survey and examined differences based on sex, competitive level, and habitual dietary pattern. The survey was completed by 1,950 endurance athletes (51.0% female, mean age 40.9 ± 11.1 years). The use of fasted training was reported by 62.9% of athletes, with significant effects of sex (p < .001, Cramer’s Vc] = 0.18, 90% CI [0.14, 0.22]), competitive level (p < .001, φc = 0.09, 90% CI [0.5, 0.13]), and habitual dietary pattern noted (p < .001, φc = 0.26, 90% CI [0.22, 0.29]). Males, nonprofessional athletes, and athletes following a low-carbohydrate, high-fat diet were most likely to perform fasted training. The most common reasons for doing so were related to utilizing fat as a fuel source (42.9%), gut comfort (35.5%), and time constraints/convenience (31.4%), whereas the most common reasons athletes avoided fasted training were that it does not help their training (47.0%), performance was worse during fasted training (34.7%), or greater hunger (34.6%). Overall, some athletes perform fasted training because they think it helps their training, whereas others avoid it because they think it is detrimental to their training goals, highlighting a need for future research. These findings offer insights into the beliefs and practices related to fasted-state endurance training.

Restricted access

Ed Maunder, Paul B. Laursen, and Andrew E. Kilding

Purpose:

To compare the physiological and performance effects of ad libitum cold-fluid (CF) and ice-slurry (IS) ingestion on cycling time-trial (TT) performance in the heat.

Methods:

Seven well-trained male triathletes and cyclists completed 2 maximaleffort 40-km cycling TTs in hot (35°C) and humid (60% relative humidity) conditions. In randomized order, participants ingested CF or IS (initial temperatures 4°C and –1°C, respectively) ad libitum during exercise. At each 5-km interval, time elapsed, power output, rectal and skin temperature, heart rate, and perceptual measures were recorded. The actual CF and IS temperatures during the 40-km TT were determined post hoc.

Results:

Performance time (2.5% ± 2.6%, ES = 0.27) and mean power (–2.2% ± 3.2%, ES = –0.15) were likely worse in the IS trial. Differences in thermoregulatory and cardiovascular measures were largely unclear between trials, while feeling state was worse in the later stages of the IS trial (ES = –0.31 to –0.95). Fluid-ingestion volume was very likely lower in the IS trial (–29.7% ± 19.4%, ES = –0.97). The temperatures of CF and IS increased by 0.37°C/min and 0.02°C/min, respectively, over the mean TT duration.

Conclusions:

Ad libitum ingestion of CF resulted in improved 40-km cycling TT performance compared with IS. Participants chose greater fluid-ingestion rates in the CF trial than in the IS trial and had improved feeling state. These findings suggest that ad libitum CF ingestion is preferable to IS during cycling TTs under conditions of environmental heat stress.

Restricted access

Ed Maunder, Andrew E. Kilding, and Simeon P. Cairns

The manifestations of fatigue during fast bowling in cricket were systematically evaluated using subjective reports by cricket experts and quantitative data published from scientific studies. Narratives by international players and team physiotherapists were sourced from the Internet using criteria for opinion-based evidence. Research articles were evaluated for high-level fast bowlers who delivered 5- to 12-over spells with at least 1 quantitative fatigue measure. Anecdotes indicate that a long-term loss of bowling speed, tiredness, mental fatigue, and soreness occur. Scientific research shows that ball-release speed, bowling accuracy, bowling action (technique), run-up speed, and leg-muscle power are generally well maintained during bowling simulations. However, bowlers displaying excessive shoulder counterrotation toward the end of a spell also show a fall in accuracy. A single notable study involving bowling on 2 successive days in the heat showed reduced ball-release speed (–4.4 km/h), run-up speed (–1.3 km/h), and accuracy. Moderate to high ratings of perceived exertion transpire with simulations and match play (6.5–7.5 Borg CR-10 scale). Changes of blood lactate, pH, glucose, and core temperature appear insufficient to impair muscle function, although several potential physiological fatigue factors have not been investigated. The limited empirical evidence for bowling-induced fatigue appears to oppose player viewpoints and indicates a paradox. However, this may not be the case since bowling simulations resemble the shorter formats of the game but not multiday (test match) cricket or the influence of an arduous season, and comments of tiredness, mental fatigue, and soreness signify phenomena different from what scientists measure as fatigue.

Restricted access

Darrell L. Bonetti, Will G. Hopkins, Timothy E. Lowe, and Andrew E. Kilding

Purpose:

Adaptation to acutely intermittent hypoxic exposure appears to produce worthwhile enhancements in endurance performance, but the current 5-min duration of hypoxia and recovery intervals may not be optimal.

Methods:

Eighteen male competitive cyclists and triathletes were randomized to one of two intermittent-hypoxia groups, and nine similar athletes represented a control group. Athletes in the hypoxia groups were exposed to 60 min per day of intermittent hypoxia consisting of alternating intervals of hypoxia and normoxia lasting either 3 or 5 min. Exposures were performed at rest for 5 consecutive days per week for 3 wk. Oxygen saturation, monitored with pulse oximetry, was reduced progressively from 90% (day 1) to 76% (day 15). All athletes maintained their usual competitive-season training throughout the study. Incremental and repeated-sprint tests were performed pre, 3 d post, and 14 d post intervention. Venous blood at rest was sampled pre, mid-, and postintervention.

Results:

There were no clear differences between effects of the two hypoxic treatments on performance or various measures of oxygen transport, hematopoiesis, and inflammation. Compared with control, the combined hypoxic groups showed clear enhancements in peak power (4.7%; 90% confidence limits, ±3.1%), lactate-profile power (4.4%; ±3.0%), and heart-rate profle power (6.5%; ±5.3%) at 3 d post intervention, but at 14 d the effects were unclear. Changes in other measures at 3 and 14 d post intervention were either unclear or unremarkable.

Conclusion:

Acutely intermittent hypoxia produced substantial enhancement in endurance performance, but the relative benefit of 3- vs 5-min exposure intervals remains unclear.

Restricted access

Joseph A. McQuillan, Deborah K. Dulson, Paul B. Laursen, and Andrew E. Kilding

We aimed to compare the effects of two different dosing durations of dietary nitrate (NO3 -) supplementation on 1 and 4 km cycling time-trial performance in highly trained cyclists. In a double-blind crossover-design, nine highly trained cyclists ingested 140ml of NO3 --rich beetroot juice containing ~8.0mmol [NO3 -], or placebo, for seven days. Participants completed a range of laboratory-based trials to quantify physiological and perceptual responses and cycling performance: time-trials on day 3 and 6 (4km) and on day 4 and 7 (1km) of the supplementation period. Relative to placebo, effects following 3- and 4-days of NO3 - supplementation were unclear for 4 (-0.8; 95% CL, ± 2.8%, p = .54) and likely harmful for 1km (-1.9; ± 2.5% CL, p = .17) time-trial mean power. Effects following 6- and 7-days of NO3 - supplementation resulted in unclear effects for 4 (0.1; ± 2.2% CL, p = .93) and 1km (-0.9; ± 2.6%CL, p = .51) time-trial mean power. Relative to placebo, effects for 40, 50, and 60% peak power output were unclear for economy at days 3 and 6 of NO3 - supplementation (p > .05). Dietary NO3 - supplementation appears to be detrimental to 1km time-trial performance in highly trained cyclists after 4-days. While, extending NO3 - dosing to ≥ 6-days reduced the magnitude of harm in both distances, overall performance in short duration cycling time-trials did not improve relative to placebo.

Restricted access

Daniel J. Plews, Paul B. Laursen, Andrew E. Kilding, and Martin Buchheit

Purpose:

Elite endurance athletes may train in a polarized fashion, such that their training-intensity distribution preserves autonomic balance. However, field data supporting this are limited.

Methods:

The authors examined the relationship between heart-rate variability and training-intensity distribution in 9 elite rowers during the 26-wk build-up to the 2012 Olympic Games (2 won gold and 2 won bronze medals). Weekly averaged log-transformed square root of the mean sum of the squared differences between R-R intervals (Ln rMSSD) was examined, with respect to changes in total training time (TTT) and training time below the first lactate threshold (>LT1), above the second lactate threshold (LT2), and between LT1 and LT2 (LT1–LT2).

Results:

After substantial increases in training time in a particular training zone or load, standardized changes in Ln rMSSD were +0.13 (unclear) for TTT, +0.20 (51% chance increase) for time >LT1, –0.02 (trivial) for time LT1–LT2, and –0.20 (53% chance decrease) for time >LT2. Correlations (±90% confidence limits) for Ln rMSSD were small vs TTT (r = .37 ± .80), moderate vs time >LT1 (r = .43 ± .10), unclear vs LT1–LT2 (r = .01 ± .17), and small vs >LT2 (r = –.22 ± .50).

Conclusion:

These data provide supportive rationale for the polarized model of training, showing that training phases with increased time spent at high intensity suppress parasympathetic activity, while low-intensity training preserves and increases it. As such, periodized low-intensity training may be beneficial for optimal training programming.