Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Andrew S. Cole x
Clear All Modify Search
Restricted access

Brooke R. Stephens, Andrew S. Cole and Anthony D. Mahon

This study examined substrate use during exercise in early-pubertal (EP), mid-pubertal (MP), late-pubertal (LP), and young-adult (YA) males. Fuel use was calculated using the RER and VO2 response during cycling exercise at 30 to 70% of VO2peak. Significant group by intensity interactions were found for lactate, RER, percent CHO, and fat use, in addition to fat and CHO oxidation rates, which suggest a maturation effect on substrate use during exercise. While significance was not achieved at all intensities, post hoc analyses revealed greater fat use, lower CHO use, and lower lactate concentrations in EP and MP compared to LP or YA. No differences were noted between EP and MP or LP and YA at any intensity, suggesting the development of an adult-like metabolic profile occurs between mid- to late-puberty and is complete by the end of puberty.

Restricted access

Anthony D. Mahon, Megan E. Woodruff, Mary P. Horn, Andrea D. Marjerrison and Andrew S. Cole

The effect of stimulant medication use by children with attention deficit/hyper-activity disorder (ADHD) on the rating of perceived exertion (RPE)—heart rate (HR) relationship was examined. Children with ADHD (n = 20; 11.3 ± 1.8 yrs) and children without ADHD (n = 25; 11.2 ± 2.1 yrs) were studied. Children with ADHD were examined while on their usual dose of medication on the day of study. HR and RPE, using the OMNI RPE scale, were assessed during a graded exercise to peak voluntary effort. The RPE-HR relationship was determined individually and the intercept and slope responses were compared between groups. The intercept was 132.4 ± 19.5 bpm for children with ADHD and 120.6 ± 15.7 bpm for children without ADHD. The slope was 7.3 ± 1.9 bpm/RPE for the children with ADHD and 8.1 ± 1.6 bpm/RPE for the children without ADHD. For the group with ADHD the intercept and slope values fell outside of the 95% CI observed in the control group. The altered relationship between RPE and HR with stimulant medication use in children with ADHD has practical implications with respect to the use of HR and RPE to monitor exercise intensity.

Restricted access

Michael P. Rogowski, Justin P. Guilkey, Brooke R. Stephens, Andrew S. Cole and Anthony D. Mahon

This study examined the influence of maturation on the oxygen uptake efficiency slope (OUES) in healthy male subjects. Seventy-six healthy male subjects (8–27 yr) were divided into groups based on maturation status: prepubertal (PP), midpubertal (MP), late-pubertal (LP), and young-adult (YA) males. Puberty status was determined by physical examination. Subjects performed a graded exercise test on a cycle ergometer to determine OUES. Group differences were assessed using a one-way ANOVA. OUES values (VO2L·min1/log10VEL·min−1) were lower in PP and MP compared with LP and YA (p < .05). When OUES was expressed relative to body mass (VO2mL·kg−1·min−1/log10VEmL·kg−1·min−1) differences between groups reversed whereby PP and MP had higher mass relative OUES values compared with LP and YA (p < .05). Adjusting OUES by measures of body mass failed to eliminate differences across maturational groups. This suggests that qualitative factors, perhaps related to oxidative metabolism, account for the responses observed in this study.

Restricted access

Andrew S. Cole, Megan E. Woodruff, Mary P. Horn and Anthony D. Mahon

Relationships between physiological parameters and 5-km running performance were examined in 15 male runners (17.3 ± 0.9 years). Running economy (RE) and blood lactate concentration ([BLa]) at 241.2 m/min, VO2max, velocity at VO2max (vVO2max), vertical jump height and muscle power, and isokinetic knee extension strength at 60°/sec and 240°/sec were measured. The participants’ best 5-km race time over the last month of the cross-country season (16.98 ± 0.76 min) was used in the analysis. The data were analyzed using Pearson correlation coefficients. Significant relationships to run time were observed for VO2max (r = -.53), RE (r = .55), and vVO2max (r = -.66), but not [BLa], isokinetic muscle torque, or vertical jump. Identifying the unique strength and power characteristics related to running performance in this age group is warranted.