Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Angelheart J.M. Rattu x
Clear All Modify Search
Restricted access

Mahmoud S. El-Sayed, Angelheart J.M. Rattu and Ian Roberts

The study examined the effect of carbohydrate ingestion on exercise performance capacity. Nine male cyclists performed two separate trials at 70% VO2max for 60 min followed by a maximal ride for 10 min. During trials subjects were fed either an 8% glucose solution (CHO) or a placebo solution (PL), which were administered at rest and during and immediately after submaximal exercise. Statistical analyses indicated that glucose levels at rest increased significantly 15 min after the ingestion of CHO compared to PL. At 30 and 60 min during submaximal exercise, plasma glucose levels decreased significantly in the CHO but not in the PL trial. Following the performance ride, glucose levels increased significantly only during the CHO test trial. Free fatty acids did not change significantly during testing trials. The maximal performance ride results showed that in the CHO trial, a significantly greater external work load was accomplished compared to the PL trial. It is concluded that CHO ingestion improves maximal exercise performance after prolonged exercise.

Restricted access

Mahmoud S. El-Sayed, Angelheart J.M. Rattu, Xia Lin and Thomas Reilly

We examined the effects of active warm-down (AWD) and carbohydrate ingestion on plasma levels of free fatty acids (FFAs) and glucose changes into recovery following prolonged submaximal exercise. Subjects in Group 1 cycled at 70% of maximal oxygen uptake (VO2max); carbohydrate (CHO) or placebo (PLA) was ingested 15 min before and 45 min during exercise. In the AWD experiment, exercise was followed immediately by an AWD and subjects were given a placebo solution. Group 2 subjects consumed CHO or PLA at 75 min during and after exercise at 70% VO2max. ANOVA revealed a significant decrease in blood glucose levels only in Group 1, with a concomitant increase in FFA concentrations during exercise in both groups. Carbohydrate ingestion in Groups 1 and 2 significantly decreased the normal response of FFAs during exercise and markedly reduced the normal elevation of FFAs in recovery. AWD following submaximal exercise had no effect on plasma FFA elevations in recovery. These results suggest that carbohydrate ingestion, but not active warm-down, attenuates FFA elevations in recovery.