Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Anna Wittekind x
Clear All Modify Search
Full access

Gareth A. Wallis and Anna Wittekind

The consumption of carbohydrate before, during, and after exercise is a central feature of the athlete’s diet, particularly those competing in endurance sports. Sucrose is a carbohydrate present within the diets of athletes. Whether sucrose, by virtue of its component monosaccharides glucose and fructose, exerts a meaningful advantage for athletes over other carbohydrate types or blends is unclear. This narrative reviews the literature on the influence of sucrose, relative to other carbohydrate types, on exercise performance or the metabolic factors that may underpin exercise performance. Inference from the research to date suggests that sucrose appears to be as effective as other highly metabolizable carbohydrates (e.g., glucose, glucose polymers) in providing an exogenous fuel source during endurance exercise, stimulating the synthesis of liver and muscle glycogen during exercise recovery and improving endurance exercise performance. Nonetheless, gaps exist in our understanding of the metabolic and performance consequences of sucrose ingestion before, during, and after exercise relative to other carbohydrate types or blends, particularly when more aggressive carbohydrate intake strategies are adopted. While further research is recommended and discussed in this review, based on the currently available scientific literature it would seem that sucrose should continue to be regarded as one of a variety of options available to help athletes achieve their specific carbohydrate-intake goals.

Restricted access

Philip Davis, Anna Wittekind and Ralph Beneke

An activity profile of competitive 3 × 2-min novice-level amateur boxing was created based on video footage and postbout blood [La] in 32 male boxers (mean ± SD) age 19.3 ± 1.4 y, body mass 62.6 ± 4.1 kg. Winners landed 18 ± 11 more punches than losers by applying more lead-hand punches in round 1 (34.2 ± 10.9 vs 26.5 ± 9.4), total punches to the head (121.3 ± 10.2 vs 96.0 ± 9.8), and block and counterpunch combinations (2.8 ± 1.1 vs. 0.1 ± 0.2) over all 3 rounds and punching combinations (44.3 ± 6.4 vs 28.8 ± 6.7) in rounds 1 and 3 (all P < .05). In 16 boxers, peak postbout blood [La] was 11.8 ± 1.6 mmol/L irrespective of winning or losing. The results suggest that landing punches requires the ability to maintain a high frequency of attacking movements, in particular the lead-hand straight punch to the head together with punching combinations. Defensive movements must initiate a counterattack. Postbout blood [La] suggests that boxers must be able to tolerate a lactate production rate of 1.8 mmol · L−1 · min−1 and maintain skillful techniques at a sufficient activity rate.