Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Arturo Casado x
Clear All Modify Search
Restricted access

Arturo Casado and Andrew Renfree

Purpose: To assess tactical and performance factors associated with progression from qualification rounds in the 800-m and 1500-m running events at the 2017 International Association of Athletics Federations World Championships. Methods: Official results were used to access final and intermediate positions and times, as well as performance characteristics of competitors. Shared variance between intermediate positions and rank order lap times with finishing positions were calculated, along with probability of automatic qualification, for athletes in each available race position at the end of every 400-m lap. Differences in race positions and lap times relative to season’s best performances were assessed between automatic qualifiers, fastest losers, and nonqualifiers. Results: Race positions at the end of each 400-m lap remained more stable through 800-m races than 1500-m races. Probability of automatic qualification decreased with both race position and rank order lap times on each lap, although rank order lap times accounted for a higher degree of shared variance than did intermediate position. In the 1500-m event, fastest losers ran at a higher percentage of season’s best speed and adopted positions closer to the race lead in the early stages. This was not the case in the 800-m. Conclusions: Intermediate positioning and the ability to produce a fast final race segment are strongly related to advancement from qualification rounds in middle-distance running events. The adoption of a more “risky” strategy characterized by higher speeds relative to season’s best may be associated with an increased likelihood of qualification as fastest losers in the 1500-m event.

Restricted access

Mark Kenneally, Arturo Casado and Jordan Santos-Concejero

This review aimed to examine the current evidence for 3 primary training intensity distribution types: (1) pyramidal training, (2) polarized training, and (3) threshold training. Where possible, the training intensity zones relative to the goal race pace, rather than physiological or subjective variables, were calculated. Three electronic databases (PubMed, Scopus, and Web of Science) were searched in May 2017 for original research articles. After analysis of 493 resultant original articles, studies were included if they met the following criteria: (1) Their participants were middle- or long-distance runners; (2) they analyzed training intensity distribution in the form of observational reports, case studies, or interventions; (3) they were published in peer-reviewed journals; and (4) they analyzed training programs with a duration of 4 wk or longer. Sixteen studies met the inclusion criteria, which included 6 observational reports, 3 case studies, 6 interventions, and 1 review. According to the results of this analysis, pyramidal and polarized training are more effective than threshold training, although the latest is used by some of the best marathon runners in the world. Despite this apparent contradictory finding, this review presents evidence for the organization of training into zones based on a percentage of goal race pace, which allows for different periodization types to be compatible. This approach requires further development to assess whether specific percentages above and below race pace are key to inducing optimal changes.