Context: Landing kinematics have been identified as a risk factor for knee injury. Detecting atypical kinematics in clinical settings is important for identifying individuals at risk for these injuries. Objective: To determine the reliability of a handheld tablet and application (app) for measuring lower-extremity kinematics during drop vertical-jump landings. Design: Measurement reliability. Setting: Laboratory. Participants: 23 healthy young adults with no lower-extremity injuries and no contraindications for jumping and landing. Intervention: Subjects performed 6 drop vertical jumps that were captured with an iPad2 and analyzed with a KinesioCapture app by 2 novice and 2 experienced raters. Three trials each were captured in the frontal and sagittal planes. Main Outcome Measures: Frontal-plane projection angles, knee flexion, and hip flexion at initial contact and maximum knee flexion were measured. ICC and SEM were calculated to determine intertrial and interrater reliability. One-way ANOVAs were used to examine differences between the measured angles of the raters. Results: Average intertrial reliability ranged from .71 to .98 for novice raters and .77 to .99 for experienced raters. SEMs were 2.3-4.3° for novice raters and 1.6-3.9° for experienced raters. Interrater ICC2,1 was .39-.98 for the novice raters and .69-.93 for the experienced raters. SEMs were smallest with the experienced raters, all less than 1.5°. Conclusion: A handheld tablet and app is promising for evaluating landing kinematics and identifying individuals at risk for knee injury in a clinical setting. Intertrial reliability is good to excellent when using average trial measures. Interrater reliability is fair to excellent depending on experience level. Multiple trials should be assessed by a single rater when assessing lower-extremity mechanics with a handheld tablet and app, and results may vary with experience level or training.
Search Results
You are looking at 1 - 3 of 3 items for
- Author: Barbara C. Belyea x
- Refine by Access: All Content x
Reliability of Using a Handheld Tablet and Application to Measure Lower-Extremity Alignment Angles
Deborah L. King and Barbara C. Belyea
Validity and Intrarater Reliability of a 2-Dimensional Motion Analysis Using a Handheld Tablet Compared With Traditional 3-Dimensional Motion Analysis
Barbara C. Belyea, Ethan Lewis, Zachary Gabor, Jill Jackson, and Deborah L. King
Context: Lower-extremity landing mechanics have been implicated as a contributing factor in knee pain and injury, yet cost-effective and clinically accessible methods for evaluating movement mechanics are limited. The identification of valid, reliable, and readily accessible technology to assess lower-extremity alignment could be an important tool for clinicians, coaches, and strength and conditioning specialists. Objective: To examine the validity and reliability of using a handheld tablet and movement-analysis application (app) for assessing lower-extremity alignment during a drop vertical-jump task. Design: Concurrent validation. Setting: Laboratory. Participants: 22 healthy college-age subjects (11 women and 11 men, mean age 21 ± 1.4 y, mean height 1.73 ± 0.12 m, mean mass 71 ± 13 kg) with no lower-extremity pathology that prevented safe landing from a drop jump. Intervention: Subjects performed 6 drop vertical jumps that were recorded simultaneously using a 3-dimensional (3D) motion-capture system and a handheld tablet. Main Outcomes Measures: Angles on the tablet were calculated using a motion-analysis app and from the 3D motion-capture system using Visual 3D. Hip and knee angles were measured and compared between both systems. Results: Significant correlations between the tablet and 3D measures for select frontal- and sagittal-plane ranges of motion and angles at maximum knee flexion (MKF) ranged from r = .48 (P = .036) for frontal-plane knee angle at MKF to r = .77 (P < .001) for knee flexion at MKF. Conclusion: Results of this study suggest that a handheld tablet and app may be a reliable method for assessing select lower-extremity joint alignments during drop vertical jumps, but this technology should not be used to measure absolute joint angles. However, sports medicine specialists could use a handheld tablet to reliably record and evaluate lower-extremity movement patterns on the field or in the clinic.
Reliability of Using a Handheld Tablet to Analyze Lower Extremity Landing Mechanics During Drop Vertical Jumps
Maggi M. Calo, Thomas Anania, Joseph D. Bello, Valerie A. Cohen, Siobhan C. Stack, Meredith D. Wells, Barbara C. Belyea, Deborah L. King, and Jennifer M. Medina McKeon
Analyzing lower extremity (LE) landing mechanics is a main component of the screening process for athletes predisposed to injury. However, easily accessible and reliable tools for this process in a clinical setting need to be established. The purpose of this study was to determine the effect of differentiations in positioning of the iPad and evaluator on the reliability of an iPad to analyze LE landing mechanics during drop vertical jumps (DVJs). The results illustrate that iPads are reliable tools that can be used to capture and analyze DVJs. In addition, the exact positioning of the evaluator does not make a significant difference in the outcome. The results suggest that iPads are a practical and reliable alternative to traditional video analysis.