Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Bas de Geus x
Clear All Modify Search
Restricted access

Kevin De Pauw, Bart Roelands, Stephen S. Cheung, Bas de Geus, Gerard Rietjens and Romain Meeusen

Purpose:

The aim of this systematic literature review was to outline the various preexperimental maximal cycle-test protocols, terminology, and performance indicators currently used to classify subject groups in sportscience research and to construct a classification system for cycling-related research.

Methods:

A database of 130 subject-group descriptions contains information on preexperimental maximal cycle-protocol designs, terminology of the subject groups, biometrical and physiological data, cycling experience, and parameters. Kolmogorov-Smirnov test, 1-way ANOVA, post hoc Bonferroni (P < .05), and trend lines were calculated on height, body mass, relative and absolute maximal oxygen consumption (VO2max), and peak power output (PPO).

Results:

During preexperimental testing, an initial workload of 100 W and a workload increase of 25 W are most frequently used. Three-minute stages provide the most reliable and valid measures of endurance performance. After obtaining data on a subject group, researchers apply various terms to define the group. To solve this complexity, the authors introduced the neutral term performance levels 1 to 5, representing untrained, recreationally trained, trained, well-trained, and professional subject groups, respectively. The most cited parameter in literature to define subject groups is relative VO2max, and therefore no overlap between different performance levels may occur for this principal parameter. Another significant cycling parameter is the absolute PPO. The description of additional physiological information and current and past cycling data is advised.

Conclusion:

This review clearly shows the need to standardize the procedure for classifying subject groups. Recommendations are formulated concerning preexperimental testing, terminology, and performance indicators.

Restricted access

Tine Torbeyns, Bas de Geus, Stephen Bailey, Lieselot Decroix, Jeroen Van Cutsem, Kevin De Pauw and Romain Meeusen

Background:

Physical activity is positively associated with physical health, cognitive performance, brain functioning and academic performance. The aim of this study is to investigate the influence of bike desks in the classroom on adolescents’ energy expenditure, physical health, cognitive performance, brain functioning and academic performance.

Methods:

Forty-four adolescents were randomly assigned to control group (CG) or intervention group (IG). During 5 months, the IG used a bike desk for 4 class hours/week. Energy expenditure was measured during 6 consecutive days. Anthropometric parameters, aerobic fitness, academic performance, cognitive performance and brain functioning were assessed before (T0) and after (T1) the intervention.

Results:

Energy expenditure of the IG was significantly higher during the class hours in which they used the bike desks relative to normal class hours. The CG had a significantly higher BMI at T1 relative to T0 while this was not significantly different for the IG. Aerobic fitness was significantly better in the IG at T1 relative to T0. No significant effects on academic performance cognitive performance and brain functioning were observed.

Conclusions:

As the implementation of bike desks in the classroom did not interfere with adolescents’ academic performance, this can be seen as an effective means of reducing in-class sedentary time and improving adolescents’ physical health.

Restricted access

Bas de Geus, Bart Degraeuwe, Grégory Vandenbulcke, Luc Int Panis, Isabelle Thomas, Joris Aertsens, Yves De Weerdt, Rudi Torfs and Romain Meeusen

Background:

For an accurate estimation of health benefits and hazards of utilitarian cycling, a prospective collection of bicycle usage data (exposure) is fundamental. Individual and environmental correlates are necessary to guide health promotion and traffic safety issues. Firstly, this study aims to report on utilitarian bicycle usage in Belgium, using a prospective data collection in regular adult commuter cyclists. Secondly, the association is explored between the individual variation in bicycle usage and individual and environmental correlates.

Methods:

1187 regular adult cyclists filled out travel diaries prospectively. Multivariate linear regression with Stepwise selection (SMLR) models studied the association between exposure and individual and environmental correlates.

Results:

Higher age and availability of cycle paths have a positive association with bicycle usage to work. Women cycle significant less compared with men, and so do cyclists with ‘poor’ or ‘average’ health. Living in an urban crown (opposed to city center) and living in Flanders (opposed to Brussels or Wallonia) is associated with significantly more cycling.

Conclusions:

Utilitarian cycling is related to regional differences, level of urbanization of the place of residence, availability of bicycle paths, and gender. These findings are useful in estimating health benefits and hazards of utilitarian cycling among regular Belgian cyclists.