Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Benedicte Vanwanseele x
Clear All Modify Search
Restricted access

Tijs Delabastita, Stijn Bogaerts and Benedicte Vanwanseele

Achilles tendon stiffness determines calf muscle functioning during functional activities. However, contrasting evidence was found in studies comparing Achilles tendon stiffness in older and younger adults. Therefore, this systematic review compares Achilles tendon stiffness and elastic modulus in older and younger adults and reviews functional implications. Studies revealed by systematic bibliographic searches were included if healthy older adults were investigated, and if Achilles tendon stiffness was measured using ultrasound and dynamometry. Meta-analyses were performed to compare Achilles tendon stiffness and elastic modulus in older and younger adults. Achilles tendon stiffness (weighted standardized mean difference = 1.40, 95% confidence intervals [0.42–2.38]) and elastic modulus (weighted standardized mean difference = 1.74, 95% confidence intervals [0.99–2.49]) were decreased in older compared with younger adults. Decreased Achilles tendon stiffness was related to walking performance and balance. Possibly, decreased Achilles tendon stiffness is caused by altered elastic modulus in older adults. Training interventions increasing Achilles tendon stiffness could improve functional capacity.

Restricted access

Damien O’Meara, Benedicte Vanwanseele, Adrienne Hunt and Richard Smith

The purpose was to develop a foot image capture and measurement system with web cameras (the 3-FIS) to provide reliable and valid foot anthropometric measures with efficiency comparable to that of the conventional method of using a handheld anthropometer. Eleven foot measures were obtained from 10 subjects using both methods. Reliability of each method was determined over 3 consecutive days using the intraclass correlation coefficient and root mean square error (RMSE). Reliability was excellent for both the 3-FIS and the handheld anthropometer for the same 10 variables, and good for the fifth metatarsophalangeal joint height. The RMSE values over 3 days ranged from 0.9 to 2.2 mm for the handheld anthropometer, and from 0.8 to 3.6 mm for the 3-FIS. The RMSE values between the 3-FIS and the handheld anthropometer were between 2.3 and 7.4 mm. The 3-FIS required less time to collect and obtain the final variables than the handheld anthropometer. The 3-FIS provided accurate and reproducible results for each of the foot variables and in less time than the conventional approach of a handheld anthropometer.

Restricted access

Roger Bourne, Mark Halaki, Benedicte Vanwanseele and Jillian Clarke

This study investigates the hypothesis that shallow edge lifting force in high-level rock climbers is more strongly related to fingertip soft tissue anatomy than to absolute strength or strength to body mass ratio. Fifteen experienced climbers performed repeated maximal single hand lifting exercises on rectangular sandstone edges of depth 2.8, 4.3, 5.8, 7.3, and 12.5 mm while standing on a force measurement platform. Fingertip soft tissue dimensions were assessed by ultrasound imaging. Shallow edge (2.8 and 4.3 mm) lifting force, in newtons or body mass normalized, was uncorrelated with deep edge (12.5 mm) lifting force (r < .1). There was a positive correlation (r = .65, p < .05) between lifting force in newtons at 2.8 mm edge depth and tip of bone to tip of finger pulp measurement (r < .37 at other edge depths). The results confirm the common perception that maximum lifting force on a deep edge (“strength”) does not predict maximum force production on very shallow edges. It is suggested that increased fingertip pulp dimension or plasticity may enable increased deformation of the fingertip, increasing the skin to rock contact area on very shallow edges, and thus increase the limit of force production. The study also confirmed previous assumptions of left/right force symmetry in climbers.

Restricted access

Alycia Fong Yan, Richard Smith, Benedicte Vanwanseele and Claire Hiller

There has been little scientific investigation of the impact of dance shoes on foot motion or dance injuries. The pointed (plantar-flexed) foot is a fundamental component of both the technical requirements and the traditional aesthetic of ballet and jazz dancing. The aims of this study were to quantify the externally observed angle of plantar flexion in various jazz shoes compared with barefoot and to compare the sagittal plane bending stiffness of the various jazz shoes. Sixteen female recreational child dancers were recruited for 3D motion analysis of active plantar flexion. The jazz shoes tested were a split-sole jazz shoe, full-sole jazz shoe, and jazz sneaker. A shoe dynamometer measured the stiffness of the jazz shoes. The shoes had a significant effect on ankle plantar flexion. All jazz shoes significantly restricted the midfoot plantar flexion angle compared with the barefoot condition. The split-sole jazz shoe demonstrated the least restriction, whereas the full-sole jazz shoe the most midfoot restriction. A small restriction in metartarsophalangeal plantar flexion and a greater restriction at the midfoot joint were demonstrated when wearing stiff jazz shoes. These restrictions will decrease the aesthetic of the pointed foot, may encourage incorrect muscle activation, and have an impact on dance performance.