Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Benjamin Long x
Clear All Modify Search
Restricted access

Benjamin L. Long, A. Isabella Gillespie and Martin L. Tanaka

Mental distractions and physical impairments can increase the risk of accidents by affecting a driver’s ability to control the vehicle. In this article, we developed a linear mathematical model that can be used to quantitatively predict drivers’ performance over a variety of possible driving conditions. Predictions were not limited only to conditions tested, but also included linear combinations of these tests conditions. Two groups of 12 participants were evaluated using a custom drivers’ reaction speed testing device to evaluate the effect of cell phone talking, texting, and a fixed knee brace on the components of drivers’ reaction speed. Cognitive reaction time was found to increase by 24% for cell phone talking and 74% for texting. The fixed knee brace increased musculoskeletal reaction time by 24%. These experimental data were used to develop a mathematical model to predict reaction speed for an untested condition, talking on a cell phone with a fixed knee brace. The model was verified by comparing the predicted reaction speed to measured experimental values from an independent test. The model predicted full braking time within 3% of the measured value. Although only a few influential conditions were evaluated, we present a general approach that can be expanded to include other types of distractions, impairments, and environmental conditions.

Restricted access

Douglas W. Powell, Benjamin Long, Clare E. Milner and Songning Zhang

The medial longitudinal arch plays a major role in determining lower extremity kinematics. Thus, it is necessary to understand the dynamics of the arch structure in response to load. The purpose of this study was to examine arch function in high- and low-arched feet during a vertical loading condition. Ten high- and ten low-arched females performed five trials in a sit-to-stand exercise. Ground reaction force (1200 Hz) and three-dimensional kinematics (240 Hz) were collected simultaneously. The high-and low-arched athletes had no differences in vertical deformation of the arch. High-arched participants were less everted than the low-arched athletes; furthermore, the high-arched athletes had smaller mid-forefoot eversion excursions. Differences between the high-arched and low-arched athletes occur through and motion at the mid-forefoot joint.