Search Results

You are looking at 1 - 10 of 16 items for

  • Author: Benno M. Nigg x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Guest Editor Comment

Benno M. Nigg

Full access

Dr. Richard C. Nelson: A Facilitator and Door Opener

Benno M. Nigg

Dr. Richard Nelson contributed to the development of sport biomechanics by being an international facilitator. Together with Dr. Jürg Wartenweiler, he contributed the necessary support and input that allowed the field of Movement and Sports Biomechanics to develop and flourish.

Restricted access

Addition of a Cognitive Task During Walking Alters Lower Body Muscle Activity

Jordyn Vienneau, Sandro Nigg, and Benno M. Nigg

This study compared electromyography of five leg muscles during a single walking task (WALK) to a dual task (walking + cognitive task; COG) in 40 individuals (20 M and 20 F) using a wavelet analysis technique. It was hypothesized that muscle activation during the dual task would differ significantly from the walking task with respect to both timing (H1) and frequency (H2). The mean overall intensity for the COG trials was 4.1% lower for the tibialis anterior and 5.5% higher for the gastrocnemius medialis than in the WALK trials. The changes between the WALK and COG trials were short 50 ms bursts that occurred within 100 ms of heel strike in the tibialis anterior, and longer activation periods during the stance phase in the gastrocnemius medialis. No changes in overall intensity were observed in the peroneus longus, gastrocnemius lateralis, or soleus. Furthermore, no clear frequency bands within the signal could further characterize the overall changes in muscle activity during the COG task. This advances our understanding of how the division of attentional resources affects muscle activity in a healthy population of adults.

Restricted access

Dynamic Angular Stiffness of the Ankle Joint during Running and Sprinting

Darren J. Stefanyshyn and Benno M. Nigg

The purpose of this study was to compare the moment-angle relationship of the ankle joint during running and sprinting to determine how the dynamic angular stiffness is influenced by different activities. For both running and sprinting, the results indicated that the ankle joint produced an exclusively extensor moment, absorbing energy during the first half of the stance phase and producing energy during the second half. The biphasic nature of the joint absorbing energy followed by the joint producing energy, while continually creating an extensor moment, was similar to a spring being compressed and allowed to extend. The dynamic stiffness of the ankle joint was 5.68 N · m/° for running and 7.38 N · m/° for sprinting. It appeared that the stiffness of the ankle joint was not a specialized characteristic of each individual but rather a specialized characteristic of the activity or demand placed upon it.

Restricted access

Influence of Attached Masses on Impact Forces and Running Style in Heel-Toe Running

Alexander Bahlsen and Benno M. Nigg

Impact forces analysis in heel-toe running is often used to examine the reduction of impact forces for different running shoes and/or running techniques. Body mass is reported to be a dominant predictor of vertical impact force peaks. However, it is not evident whether this finding is only true for the real body mass or whether it is also true for additional masses attached to the body (e.g., running with additional weight or heavy shoes). The purpose of this study was to determine the effect of additional mass on vertical impact force peaks and running style. Nineteen subjects (9 males, 10 females) with a mean mass of 74.2 kg/56.2 kg (SD = 10.0 kg and 6.0 kg) volunteered to participate in this study. Additional masses were attached to the shoe (.05 and .1 kg), the tibia (.2, .4, .6 kg), and the hip (5.9 and 10.7 kg). Force plate measurements and high-speed film data were analyzed. In this study the vertical impact force peaks, Fzi, were not affected by additional masses, the vertical active force peaks, Fza, were only affected by additional masses greater than 6 kg, and the movement was only different in the knee angle at touchdown, ϵ0, for additional masses greater than .6 kg. The results of this study did not support findings reported earlier in the literature that body mass is a dominant predictor of external vertical impact force peaks.

Restricted access

Influence of Heel Flare and Midsole Construction on Pronation Supination and Impact Forces for Heel-Toe Running

Benno M. Nigg and H. Alexander Bahlsen

The purpose of this study was to determine the influence of lateral heel flare on pronation, external impact forces, and takeoff supination for different midsole constructions. Data were collected using force platforms and high-speed film cameras. Fourteen male subjects participated in the study, running heel-toe at a speed of 4 m/s. The analysis of kinetic and kinematic variables showed that changes in lateral heel flare of 16°, 0°, and a rounded heel can be used to influence initial pronation during heel-toe running. It could be shown that changes in lateral heel flare do not have a relevant influence on changes in total and/or maximal pronation. Changes in lateral heel flare do have an effect on vertical impact force peaks if the midsole is relatively hard but not if the midsole is relatively soft. Based on the present study, a running shoe with a relatively hard midsole material and a neutral flare would have low initial pronation values and low vertical impact force peaks.

Restricted access

Quantification of Soft-Tissue Vibrations in Running: Accelerometry versus High-Speed Motion Capture

Aurel Coza, Benno M. Nigg, and Ladina Fliri

Soft-tissue vibrations can be used to quantify selected properties of human tissue and their response to impact. Vibrations are typically quantified using high-speed motion capture or accelerometry. The aim of this study was to compare the amplitude and frequency of soft-tissue vibrations during running when quantified by highspeed motion capture and accelerometry simultaneously. This study showed: (a) The estimated measurement errors for amplitude and frequency were of the same order of magnitude for both techniques. (b) There were no significant differences in the mean peak frequencies and peak amplitudes measured by the two methods. (c) The video method showed an inability to capture high frequency information. This study has shown that a tradeoff has to be made between the accuracy in amplitude and frequency when these methods are employed to quantify soft tissue vibrations in running.

Restricted access

Impact Forces during Heel-Toe Running

Benno M. Nigg, Gerald K. Cole, and Gert-Peter Brüggemann

Impact forces have been speculated to be associated with the development of musculoskeletal injuries. However, several findings indicate that the concepts of “impact forces” and the paradigms of their “cushioning” may not be well understood in relation to the etiology of running injuries and that complex mechanisms may be responsible for injury development during running. The purposes of this paper are (a) to review impact mechanics during locomotion, (b) to review injuries and changes of biological tissue due to impact loading, and (c) to synthesize the mechanical and biological findings. In addition, directions for future research are discussed. Future research should address the development of noninvasive techniques to assess changes in the morphology and biochemistry of bone, cartilage, tendon, and ligaments; researchers should also try to simulate impact loading during activities such as running, focusing on the interaction of the various loading parameters that determine the acceptable windows of loading for biological tissues.

Restricted access

A Novel Approach to Determine Strides, Ice Contact, and Swing Phases During Ice Hockey Skating Using a Single Accelerometer

Bernd J. Stetter, Erica Buckeridge, Vinzenz von Tscharner, Sandro R. Nigg, and Benno M. Nigg

This study presents a new approach for automated identification of ice hockey skating strides and a method to detect ice contact and swing phases of individual strides by quantifying vibrations in 3D acceleration data during the blade–ice interaction. The strides of a 30-m forward sprinting task, performed by 6 ice hockey players, were evaluated using a 3D accelerometer fixed to a hockey skate. Synchronized plantar pressure data were recorded as reference data. To determine the accuracy of the new method on a range of forward stride patterns for temporal skating events, estimated contact times and stride times for a sequence of 5 consecutive strides was validated. Bland-Altman limits of agreement (95%) between accelerometer and plantar pressure derived data were less than 0.019 s. Mean differences between the 2 capture methods were shown to be less than 1 ms for contact and stride time. These results demonstrate the validity of the novel approach to determine strides, ice contact, and swing phases during ice hockey skating. This technology is accurate, simple, effective, and allows for in-field ice hockey testing.

Restricted access

Increased Athletic Performance in Lighter Basketball Shoes: Shoe or Psychology Effect?

Maurice Mohr, Matthieu B. Trudeau, Sandro R. Nigg, and Benno M. Nigg


To determine the effect of shoe mass on performance in basketball-specific movements and how this affects changes if an athlete is aware or not of the shoe’s mass relative to other shoes.


In an experimental design, 22 male participants were assigned to 2 groups. In the “aware” group, differences in the mass of the shoes were disclosed, while participants in the other group were blinded to the mass of shoes. For both groups lateral shuffle-cut and vertical-jump performances were quantified in 3 different basketball-shoe conditions (light, 352 ± 18.4 g; medium, 510 ± 17 g; heavy, 637 ± 17.7 g). A mixed ANOVA compared mean shuffle-cut and vertical-jump performances across shoes and groups. For blinded participants, perceived shoeweight ratings were collected and compared across shoe conditions using a Friedman 2-way ANOVA.


In the aware group, performance in the light shoes was significantly increased by 2% (vertical jump 2%, P < .001; shuffle cut 2.1%, P < .001) compared with the heavy shoes. In the blind group, participants were unable to perceive the shoe-weight variation between conditions, and there were no significant differences in vertical-jump and shuffle-cut performance across shoes.


Differences in performance of the aware participants were most likely due to psychological effects such as positive and negative expectancies toward the light and heavy shoes, respectively. These results underline the importance for coaches and shoe manufacturers to communicate the performance-enhancing benefits of products or other interventions to athletes to optimize their performance outcome.