Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Bettina Karsten x
Clear All Modify Search
Restricted access

Bettina Karsten, Liesbeth Stevens, Mark Colpus, Eneko Larumbe-Zabala and Fernando Naclerio

Purpose:

To investigate the effects of a sport-specific maximal 6-wk strength and conditioning program on critical velocity (CV), anaerobic running distance (ARD), and 5-km time-trial performance (TT).

Methods:

16 moderately trained recreational endurance runners were tested for CV, ARD, and TT performances on 3 separate occasions (baseline, midstudy, and poststudy).

Design:

Participants were randomly allocated into a strength and conditioning group (S&C; n = 8) and a comparison endurance-trainingonly group (EO; n = 8). During the first phase of the study (6 wk), the S&C group performed concurrent maximal strength and endurance training, while the EO group performed endurance-only training. After the retest of all variables (midstudy), both groups subsequently, during phase 2, performed another 6 wk of endurance-only training that was followed by poststudy tests.

Results:

No significant change for CV was identified in either group. The S&C group demonstrated a significant decrease for ARD values after phases 1 and 2 of the study. TT performances were significantly different in the S&C group after the intervention, with a performance improvement of 3.62%. This performance increase returned close to baseline after the 6-wk endurance-only training.

Conclusion:

Combining a 6-wk resistance-training program with endurance training significantly improves 5-km TT performance. Removing strength training results in some loss of those performance improvements.

Restricted access

Bettina Karsten, Jonathan Baker, Fernando Naclerio, Andreas Klose, Antonino Bianco and Alfred Nimmerichter

Purpose: To investigate single-day time-to-exhaustion (TTE) and time-trial (TT) -based laboratory tests values of critical power (CP), W prime (W′), and respective oxygen-uptake-kinetic responses. Methods: Twelve cyclists performed a maximal ramp test followed by 3 TTE and 3 TT efforts interspersed by 60 min recovery between efforts. Oxygen uptake (V˙O2) was measured during all trials. The mean response time was calculated as a description of the overall V˙O2-kinetic response from the onset to 2 min of exercise. Results: TTE-determined CP was 279 ± 52 W, and TT-determined CP was 276 ± 50 W (P = .237). Values of W′ were 14.3 ± 3.4 kJ (TTE W′) and 16.5 ± 4.2 kJ (TT W′) (P = .028). While a high level of agreement (−12 to 17 W) and a low prediction error of 2.7% were established for CP, for W′ limits of agreements were markedly lower (−8 to 3.7 kJ), with a prediction error of 18.8%. The mean standard error for TTE CP values was significantly higher than that for TT CP values (2.4% ± 1.9% vs 1.2% ± 0.7% W). The standard errors for TTE W′ and TT W′ were 11.2% ± 8.1% and 5.6% ± 3.6%, respectively. The V˙O2 response was significantly faster during TT (~22 s) than TTE (~28 s). Conclusions: The TT protocol with a 60-min recovery period offers a valid, time-saving, and less error-filled alternative to conventional and more recent testing methods. Results, however, cannot be transferred to W′.