Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Bjørn H. Olstad x
Clear All Modify Search
Restricted access

Brice Guignard, Bjørn H. Olstad, David Simbaña Escobar, Jessy Lauer, Per-Ludvik Kjendlie and Annie H. Rouard

Purpose:

To investigate electromyographical (EMG) profiles characterizing the lower-limb flexion-extension in an aquatic environment in high-level breaststrokers.

Methods:

The 2-dimensional breaststroke kick of 1 international- and 2 national-level female swimmers was analyzed during 2 maximal 25-m swims. The activities of biceps femoris, rectus femoris, gastrocnemius, and tibialis anterior were recorded.

Results:

The breaststroke kick was divided in 3 phases, according to the movements performed in the sagittal plane: push phase (PP) covering 27% of the total kick duration, glide phase (GP) 41%, and recovery phase (RP) 32%. Intrasubject reproducibility of the EMG and kinematics was observed from 1 stroke cycle to another. In addition, important intersubject kinematic reproducibility was noted, whereas muscle activities discriminated the subjects: The explosive Pp was characterized by important muscle-activation peaks. During the recovery, muscles were likewise solicited for swimmers 1 (S1) and 2 (S2), while the lowest activities were observed during GP for S2 and swimmer 3 (S3), but not for S1, who maintained major muscle solicitations.

Conclusions:

The main muscle activities were observed during PP to perform powerful lower-limb extension. The most-skilled swimmer (S1) was the only 1 to solicit her muscles during GP to actively reach better streamlining. Important activation peaks during RP correspond to the limbs acting against water drag. Such differences in EMG strategies among an elite group highlight the importance of considering the muscle parameters used to effectively control the intensity of activation among the phases for a more efficient breaststroke kick.

Restricted access

Bjørn Harald Olstad, Christoph Zinner, João Rocha Vaz, Jan M.H. Cabri and Per-Ludvik Kjendlie

Purpose:

To investigate the muscle-activation patterns and coactivation with the support of kinematics in some of the world’s best breaststrokers and identify performance discriminants related to national elites at maximal effort.

Methods:

Surface electromyography was collected in 8 muscles from 4 world-class (including 2 world champions) and 4 national elite breaststroke swimmers during a 25-m breaststroke at maximal effort.

Results:

World-class spent less time during the leg recovery (P = .043), began this phase with a smaller knee angle (154.6° vs 161.8°), and had a higher median velocity of 0.18 m/s during the leg glide than national elites. Compared with national elites, world-class swimmers showed a difference in the muscle-activation patterns for all 8 muscles. In the leg-propulsion phase, there was less triceps brachii activation (1 swimmer 6% vs median 23.0% [8.8]). In the leg-glide phase, there was activation in rectus femoris and gastrocnemius during the beginning of this phase (all world-class vs only 1 national elite) and a longer activation in pectoralis major (world champions 71% [0.5] vs 50.0 [4.3]) (propulsive phase of the arms). In the leg-recovery phase, there was more activation in biceps femoris (50.0% [15.0] vs 20.0% [14.0]) and a later and quicker activation in tibialis anterior (40.0% [7.8] vs 52.0% [6.0]). In the stroke cycle, there was no coactivation in tibialis anterior and gastrocnemius for world champions.

Conclusion:

These components are important performance discriminants. They can be used to improve muscle-activation patterns and kinematics through the different breaststroke phases. Furthermore, they can be used as focus points for teaching breaststroke to beginners.