Search Results

You are looking at 1 - 6 of 6 items for

  • Author: Brad Clark x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Naroa Etxebarria, Megan L. Ross, Brad Clark, and Louise M. Burke

Purpose: The authors investigated the potential benefit of ingesting 2 mM of quinine (bitter tastant) on a 3000-m cycling time-trial (TT) performance. Methods: Nine well-trained male cyclists (maximal aerobic power: 386 [38] W) performed a maximal incremental cycling ergometer test, three 3000-m familiarization TTs, and four 3000-m intervention TTs (∼4 min) on consecutive days. The 4 interventions were (1) 25 mL of placebo, (2) a 25-mL sweet solution, and (3) and (4) repeat 25 mL of 2-mM quinine solutions (Bitter1 and Bitter2), 30 s before each trial. Participants self-selected their gears and were only aware of distance covered. Results: Overall mean power output for the full 3000 m was similar for all 4 conditions: placebo, 348 (45) W; sweet, 355 (47) W; Bitter1, 354 (47) W; and Bitter2, 355 (48) W. However, quinine administration in Bitter1 and Bitter2 increased power output during the first kilometer by 15 ± 11 W and 21 ± 10 W (mean ± 90% confidence limits), respectively, over placebo, followed by a decay of 34 ± 32 W during Bitter1 and Bitter2 during the second kilometer. Bitter2 also induced a 11 ± 13-W increase during the first kilometer compared with the sweet condition. Conclusions: Ingesting 2 mM of quinine can improve cycling performance during the first one-third of a 3000-m TT and could be used for sporting events lasting ∼80 s to potentially improve overall performance.

Restricted access

Stephanie J. Shell, Brad Clark, James R. Broatch, Katie Slattery, Shona L. Halson, and Aaron J. Coutts

Purpose: This study aimed to independently validate a wearable inertial sensor designed to monitor training and performance metrics in swimmers. Methods: A total of 4 male (21 [4] y, 1 national and 3 international) and 6 female (22 [3] y, 1 national and 5 international) swimmers completed 15 training sessions in an outdoor 50-m pool. Swimmers were fitted with a wearable device (TritonWear, 9-axis inertial measurement unit with triaxial accelerometer, gyroscope, and magnetometer), placed under the swim cap on top of the occipital protuberance. Video footage was captured for each session to establish criterion values. Absolute error, standardized effect, and Pearson correlation coefficient were used to determine the validity of the wearable device against video footage for total swim distance, total stroke count, mean stroke count, and mean velocity. A Fisher exact test was used to analyze the accuracy of stroke-type identification. Results: Total swim distance was underestimated by the device relative to video analysis. Absolute error was consistently higher for total and mean stroke count, and mean velocity, relative to video analysis. Across all sessions, the device incorrectly detected total time spent in backstroke, breaststroke, butterfly, and freestyle by 51% (15%). The device did not detect time spent in drill. Intraclass correlation coefficient results demonstrated excellent intrarater reliability between repeated measures across all swimming metrics. Conclusions: The wearable device investigated in this study does not accurately measure distance, stroke count, and velocity swimming metrics or detect stroke type. Its use as a training monitoring tool in swimming is limited.

Restricted access

Naroa Etxebarria, Brad Clark, Megan L. Ross, Timothy Hui, Roland Goecke, Ben Rattray, and Louise M. Burke

The ingestion of quinine, a bitter tastant, improves short-term (30 s) cycling performance, but it is unclear whether this effect can be integrated into the last effort of a longer race. The purpose of this study was to determine whether midtrial quinine ingestion improves 3,000-m cycling time-trial (TT) performance. Following three familiarization TTs, 12 well-trained male cyclists (mean ± SD: mass = 76.6 ± 9.2 kg, maximal aerobic power = 390 ± 50 W, maximal oxygen uptake = 4.7 ± 0.6 L/min) performed four experimental 3,000-m TTs on consecutive days. This double-blind, crossover design study had four randomized and counterbalanced conditions: (a) Quinine 1 (25-ml solution, 2 mM of quinine); (b) Quinine 2, replicate of Quinine 1; (c) a 25-ml sweet-tasting no-carbohydrate solution (Placebo); and (d) 25 ml of water (Control) consumed at the 1,850-m point of the TT. The participants completed a series of perceptual scales at the start and completion of all TTs, and the power output was monitored continuously throughout all trials. The power output for the last 1,000 m for all four conditions was similar: mean ± SD: Quinine 1 = 360 ± 63 W, Quinine 2 = 367 ± 63 W, Placebo = 364 ± 64 W, and Control = 367 ± 58 W. There were also no differences in the 3,000-m TT power output between conditions. The small perceptual differences between trials at specific 150-m splits were not explained by quinine intake. Ingesting 2 mM of quinine during the last stage of a 3,000-m TT did not improve cycling performance.

Restricted access

Kathleen H. Miles, Brad Clark, Jocelyn K. Mara, Peter M. Fowler, Joanna Miller, and Kate L. Pumpa

Purpose: To compare the habitual sleep of female basketball and soccer athletes to age- and sex-matched controls and to characterize the sleep of basketball and soccer athletes at different competition locations and on the days surrounding competition. Methods: Using an observational case–control design, 41 female participants were recruited to participate, consisting of 11 basketball athletes (mean [SD]: age = 24.1 [4.9] y), 10 soccer athletes (24.8 [6.4] y), and 20 nonathletic controls (24.2 [2.8] y). Sleep was monitored using actigraphy for four 7-day periods throughout the preseason and subsequent competition season. Generalized linear models were used to analyze the effect of group and competition situation (eg, Home or Away) on sleep. Results: During habitual conditions, basketball athletes had longer sleep durations (7.4 [1.5] h) than soccer athletes (7.0 [1.2] h, P < .001) and controls (7.3 [1.2] h, P = .002). During competition, basketball and soccer athletes had longer sleep durations following home (7.7 [1.7] and 7.2 ± 1.3 h) compared with away games (6.8 [1.8] and 7.0 [1.3] h). In addition, basketballers went to bed earlier (23:49 [01:25]) and woke earlier (07:22 [01:59]) following away games compared with soccer athletes (00:10 [01:45] and 08:13 [01:45]). Conclusions: Basketballers had longer habitual sleep durations compared with soccer athletes and nonathletic controls. During competition, basketballers had earlier bed and wake times compared with soccer athletes following away games, highlighting the need for individualized sleep strategies.

Restricted access

Avish P. Sharma, Philo U. Saunders, Laura A. Garvican-Lewis, Brad Clark, Marijke Welvaert, Christopher J. Gore, and Kevin G. Thompson

Purpose: To determine the effect of altitude training at 1600 and 1800 m on sea-level (SL) performance in national-level runners. Methods: After 3 wk of SL training, 24 runners completed a 3-wk sojourn at 1600 m (ALT1600, n = 8), 1800 m (ALT1800, n = 9), or SL (CON, n = 7), followed by up to 11 wk of SL racing. Race performance was measured at SL during the lead-in period and repeatedly postintervention. Training volume (in kilometers) and load (session rating of perceived exertion) were calculated for all sessions. Hemoglobin mass was measured via CO rebreathing. Between-groups differences were evaluated using effect sizes (Hedges g). Results: Performance improved in both ALT1600 (mean [SD] 1.5% [0.9%]) and ALT1800 (1.6% [1.3%]) compared with CON (0.4% [1.7%]); g = 0.83 (90% confidence limits −0.10, 1.66) and 0.81 (−0.09, 1.62), respectively. Season-best performances occurred 5 to 71 d postaltitude in ALT1600/1800. There were large increases in training load from lead-in to intervention in ALT1600 (48% [32%]) and ALT1800 (60% [31%]) compared with CON (18% [20%]); g = 1.24 (0.24, 2.08) and 1.69 (0.65, 2.55), respectively. Hemoglobin mass increased in ALT1600 and ALT1800 (∼4%) but not CON. Conclusions: Larger improvements in performance after altitude training may be due to the greater overall load of training in hypoxia compared with normoxia, combined with a hypoxia-mediated increase in hemoglobin mass. A wide time frame for peak performances suggests that the optimal window to race postaltitude is individual, and factors other than altitude exposure per se may be important.

Open access

Avish P. Sharma, Philo U. Saunders, Laura A. Garvican-Lewis, Brad Clark, Jamie Stanley, Eileen Y. Robertson, and Kevin G. Thompson


To determine the effect of training at 2100-m natural altitude on running speed (RS) during training sessions over a range of intensities relevant to middle-distance running performance.


In an observational study, 19 elite middle-distance runners (mean ± SD age 25 ± 5 y, VO2max, 71 ± 5 mL · kg–1 · min–1) completed either 4–6 wk of sea-level training (CON, n = 7) or a 4- to 5-wk natural altitude-training camp living at 2100 m and training at 1400–2700 m (ALT, n = 12) after a period of sea-level training. Each training session was recorded on a GPS watch, and athletes also provided a score for session rating of perceived exertion (sRPE). Training sessions were grouped according to duration and intensity. RS (km/h) and sRPE from matched training sessions completed at sea level and 2100 m were compared within ALT, with sessions completed at sea level in CON describing normal variation.


In ALT, RS was reduced at altitude compared with sea level, with the greatest decrements observed during threshold- and VO2max-intensity sessions (5.8% and 3.6%, respectively). Velocity of low-intensity and race-pace sessions completed at a lower altitude (1400 m) and/or with additional recovery was maintained in ALT, though at a significantly greater sRPE (P = .04 and .05, respectively). There was no change in velocity or sRPE at any intensity in CON.


RS in elite middle-distance athletes is adversely affected at 2100-m natural altitude, with levels of impairment dependent on the intensity of training. Maintenance of RS at certain intensities while training at altitude can result in a higher perceived exertion.