Search Results

You are looking at 1 - 10 of 14 items for

  • Author: Bradley D. Hatfield x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Kinesiology and Mental Health: The Promise of Exercise Neuroscience Research for Diseases and Disorders of the Brain

Bradley D. Hatfield

The relevance of kinesiology to the major issues of public health facing the nation is increasing with time. Of great importance is the area of exercise neuroscience in which remarkable developments have occurred in the past 35 years. The primary investigative efforts to date have been devoted to the impact of exercise on normal brain aging and recent efforts have also focused on the neurocognitive benefit to brain development in children. However, little work has been conducted in those with neurological disorders. The literature includes a number of animal studies that offer biological plausibility for the positive influence of exercise observed on brain structure and cognition in normal human subjects and, collectively, these studies provide a foundation on which to examine the role of exercise treatment in some of the major brain disorders that afflict adults and children today. These include the dementias, stroke, traumatic brain disorder (TBI), post-traumatic stress disorder (PTSD), and attentional deficit and hyperactivity disorder (ADHD). A role for exercise in building resilience to such disorders is discussed here that may assist in reducing the financial and emotional burden of these affictions.

Restricted access

Brain Dynamics and Motor Behavior: A Case for Efficiency and Refinement for Superior Performance

Bradley D. Hatfield

The paper presents a theoretical perspective on brain activity that characterizes expert cognitive-motor performance grounded in neural and psychomotor efficiency. Evidence for the position is derived from several different measurement tools (EEG, ERPs, fMRI, EEG coherence) based on empirical studies of (1) expert-novice contrasts, (2) changes in the brain after practice, and (3) motor performance under conditions of mental stress. The impact of mental stress on brain processes during motor performance is then discussed followed by a model of the hypothesized central neural responses to emotion-eliciting events to explain resilience to stress and the ability to “perform under pressure” as observed in high-performing athletes. An overall explanation is offered of the cascade of events that link the perception of the environment in which the performance occurs to the peripheral process of motor unit recruitment and the resultant quality of movement. This integrative perspective on human performance considers multiple levels of explanation including the psychology of sport performance, cognitive-motor neuroscience, and basic biomechanics to understand the kinematic qualities of movement and the effort cost involved.

Restricted access

Cathy Ennis, A Colleague and Friend

Jane E. Clark and Bradley D. Hatfield

Restricted access

Psychological Momentum in Target Shooting: Cortical, Cognitive-Affective, and Behavioral Responses

Scott E. Kerick, Seppo E. Iso-Ahola, and Bradley D. Hatfield

The purpose of this study was to investigate the extent to which perceptions of psychological momentum (PM) are associated with affect and whether affective responses accounted for a significant proportion of target shooting performance variance. This purpose was examined within the framework of the multidimensional model of momentum. Precipitating PM events were manipulated by providing false performance feedback to isolate psychological effects on performance. EEG data were obtained during real-time performance, and frontal asymmetry was analyzed to assess the viability of the approach-withdrawal motivational system as an underlying mechanism to explain the PM-performance relationship. Although cognitive perceptions of PM were reliably altered by the feedback in the hypothesized direction, affective responses, frontal asymmetry, and shooting performance did not significantly differ among feedback conditions. Overall, these findings suggest that cognitive PM perceptions may evolve in response to precipitating events independently from affective, electrophysiological, and performance effects in novice participants.

Restricted access

Temporal Dynamics and Dimensional Specificity of the Affective Response to Exercise of Varying Intensity: Differing Pathways to a Common Outcome

Walter R. Bixby, Thomas W. Spalding, and Bradley D. Hatfield

Electroencephalographic (EEG) and self-report measures of affect were obtained from 27 participants (14 F, 13 M) before, during, and following 30 min of continuous exercise at low and high intensities to determine the respective temporal courses of affective response. Mood was measured via a visual analog mood scale (VAMS), the Positive and Negative Affect Schedules (PANAS-PA and -NA), and EEG hemispheric asymmetry as obtained from three electrode pairs: F4-F3, F8-F7, and P4-P3. Participants reported higher VAMS and lower PANAS-NA scores during low-intensity exercise relative to baseline, and the higher scores were maintained during recovery. In contrast, they reported lower scores on the VAMS during high-intensity exercise relative to baseline that were subsequently elevated during recovery. Also, during high-intensity exercise the PANAS-NA scores were similar to baseline, but they were lower during recovery. Both the VAMS and PANAS-NA scores observed after exercise were similar regardless of intensity. Additionally, participants had higher PANAS-PA and EEG hemispheric asymmetry scores (i.e., F8-F7) during exercise at both intensities relative to baseline, then reported values similar to baseline levels on cessation of work. The magnitude of change from baseline for the PANAS-PA and EEG scores during exercise was similar regardless of exercise intensity.

Restricted access

Run for Your Life! Childhood Physical Activity Effects on Brain and Cognition

Charles H. Hillman, Kirk I. Erickson, and Bradley D. Hatfield

The past two decades have uncovered the beneficial relation of physical activity and other health behaviors on brain and cognition, with the majority of data emerging from older adult populations. More recently, a similar research thread has emerged in school-aged children, which offers insight into the relation of physical activity to scholastic performance, providing a real-world application of the benefits observed in the laboratory. Technological advances have similarly furthered our understanding of physical activity effects on cognitive and brain health. Given this emerging body of work, this manuscript reviews the basic findings within the field, but more importantly suggests triggers or signals from the emerging literature that will shape the field in the near future. The overall goal of this body of research is to increase cognitive and brain health to promote effective functioning of individuals across the lifespan.

Restricted access

Generalization of Self-Efficacy to a Continuum of Stressors upon Mastery of a High-Risk Sport Skill

Evan B. Brody, Bradley D. Hatfield, and Thomas W. Spalding

This study examined the generalization of self-efficacy to additional stressors upon mastery of a high-risk task (i.e., rappeling). A secondary purpose was to determine if reductions in the psychophysiological anxiety response would occur to controlled laboratory challenges as a result of any psychological changes derived from the mastery experience. To investigate these issues, the researchers assigned college-age males (N=34) to treatment, consisting of participant-based modeling with self-directed mastery, or control. Self-efficacy was enhanced toward the rappel situation after treatment and the perceived increase was generalized to the area of high-risk activities. State anxiety was significantly reduced toward the treatment situation (i.e., rappel) at posttest, but no parallel change in stress reactivity or self-reported anxiety generalized to the laboratory stressors. This finding was expected, as no changes were noted in self-reported efficacy to accomplish the laboratory challenges. These results support the generalization of self-efficacy to relatively similar situations.

Open access

Optimization of Human Performance

Bradley D. Hatfield, Calvin M. Lu, and Jo B. Zimmerman

Restricted access

Assessment of Reactive Motor Performance with Event-Related Brain Potentials: Attention Processes in Elite Table Tennis Players

Tsung-Min Hung, Thomas W. Spalding, D. Laine Santa Maria, and Bradley D. Hatfield

Motor readiness, visual attention, and reaction time (RT) were assessed in 15 elite table tennis players (TTP) and 15 controls (C) during Posner’s cued attention task. Lateralized readiness potentials (LRP) were derived from contingent negative variation (CNV) at Sites C3 and C4, elicited between presentation of directional cueing (S1) and the appearance of the imperative stimulus (S2), to assess preparation for hand movement while P1 and N1 component amplitudes were derived from occipital event-related potentials (ERPs) in response to S2 to assess visual attention. Both groups had faster RT to validly cued stimuli and slower RT to invalidly cued stimuli relative to the RT to neutral stimuli that were not preceded by directional cueing, but the groups did not differ in attention benefit or cost. However, TTP did have faster RT to all imperative stimuli; they maintained superior reactivity to S2 whether preceded by valid, invalid, or neutral warning cues. Although both groups generated LRP in response to the directional cues, TTP generated larger LRP to prepare the corresponding hand for movement to the side of the cued location. TTP also had an inverse cueing effect for N1 amplitude (i.e., amplitude of N1 to the invalid cue > amplitude of N1 to the valid cue) while C visually attended to the expected and unexpected locations equally. It appears that TTP preserve superior reactivity to stimuli of uncertain location by employing a compensatory strategy to prepare their motor response to an event associated with high probability, while simultaneously devoting more visual attention to an upcoming event of lower probability.

Restricted access

Cortico-cortical Communication and Superior Performance in Skilled Marksmen: An EEG Coherence Analysis

Sean P. Deeny, Charles H. Hillman, Christopher M. Janelle, and Bradley D. Hatfield

Electroencephalographic (EEG) coherence was assessed during a 4-s aiming period prior to trigger pull in expert marksmen (n = 10) and skilled shooters (n = 9) over the course of a regulation round of small-bore rifle shooting. Although both groups were highly experienced, the skilled group had lower ability. Given that specialization of cortical function occurs as domain-specific expertise increases, experts were predicted to exhibit less cortico-cortical communication, especially between cognitive and motor areas, compared to the skilled group. Coherence was assessed for three frequency bands (low alpha, 8–10 Hz; high alpha, 10–13 Hz; and low beta, 13–22 Hz) using sites F3, Fz, F4, C3, Cz, C4, T3, T4, P3, Pz, P4, O1, and O2. Compared to the skilled group, experts exhibited lower coherence between left temporal (T3) and mid-line frontal (Fz) regions for low-alpha and low-beta frequencies, lower coherence for high-alpha between all left hemisphere sites and (Fz), and lower coherence between T3 and all midline sites for the low-beta band. The results reveal that, compared to lesser skilled shooters, experts engage in less cortico-cortical communication, particularly between left temporal association and motor control regions, which implies decreased involvement of cognition with motor processes.