Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Brian Hanley x
  • All content x
Clear All Modify Search
Restricted access

Brian Hanley


The aim of this study was to describe the pacing profiles used by racewalkers competing in IAAF World Championships.


The times for each 5-km segment were obtained for 225 men competing over 20 km, 214 women competing over 20 km, and 232 men competing over 50 km, of whom 49 did not finish. Athletes were grouped based on finishing position (for medalists) or finishing time.


Different pacing profiles were used by athletes grouped by finishing time, with 20-km medalists using negative pacing and those finishing within 5% of the winning time matching the medalists’ early pace but failing to maintain it. Lower-placed 20-km athletes tended to start more quickly relative to personal-best pace and experienced significant decreases in pace later. Across all competitions, the fastest finishers started the slowest relative to previous best performance. All 50-km athletes slowed toward the finish, but lower-placed finishers tended to decrease pace earlier (with up to 60% of the race remaining). After halfway in the 50-km, 8 of the 15 athletes who had a 5-km split more than 15% slower than the previous split dropped out.


The negative pacing profile used by 20-km medalists required the ability to start fast and maintain this pace, and similarly paced training may be beneficial in race preparation. Over 50 km, the tactic of starting slower than personal-best pace was generally less risky; nonetheless, any chosen pacing strategy should be based on individual strengths.

Restricted access

Brian Hanley, Trent Stellingwerff, and Florentina J. Hettinga

Purpose: This was the first study to analyze high-resolution pacing data from multiple global championships, allowing for deeper and rigorous analysis of pacing and tactical profiles in elite-standard middle-distance racing. The aim of this study was to analyze successful and unsuccessful middle-distance pacing profiles and variability across qualifying rounds and finals. Methods: Finishing and 100-m-split speeds and season’s best times were collected for 265 men and 218 women competing in 800- and 1500-m races, with pace variability expressed using coefficient of variation. Results: In both events, successful athletes generally separated themselves from slower athletes in the final 200 m, not by speeding up but by avoiding slowing compared with competitors. This was despite different pacing profiles between events in the earlier part of the race preceding the end spurt. Approximately 10% of athletes ran season’s best times, showing a tactical approach to elite-standard middle-distance racing and possible fatigue across rounds. Men’s and women’s pacing profiles were remarkably similar within each event, but the previously undescribed seahorse-shaped profile in the 800-m (predominantly positive pacing) differed from the J-shaped negative pacing of the 1500-m. Pacing variability was high compared with world records, especially in the finals (coefficient of variation: 5.2–9.1%), showing that athletes need to be able to vary pace and cope with surges. Conclusions: The best athletes had the physiological capacity to vary pace and respond to surges through successive competition rounds. In competition-specific training, coaches should incorporate several sessions in which pace changes frequently and sometimes unexpectedly.

Restricted access

Andrew Renfree, Arturo Casado, Gonzalo Pellejero, and Brian Hanley

Purpose: To determine different relationships between, and predictive ability of, performance variables at intermediate distances with finishing time in elite male 10,000-m runners. Methods: Official electronic finishing and 100-m split times of the men’s 10,000-m finals at the 2008 and 2016 Olympic Games and IAAF World Championships in 2013 and 2017 were obtained (125 athlete performances in total). Correlations were calculated between finishing times and positions and performance variables related to speed, position, time to the leader, and time to the runner in front at 2000, 4000, 6000, 8000, and 9900 m. Stepwise linear-regression analysis was conducted between finishing times and positions and these variables across the race. One-way analysis of variance was performed to identify differences between intermediate distances. Results: The SD and kurtosis of mean time, skewness of mean time, and position and time difference to the leader were either correlated with or significantly contributed to predictions of finishing time and position at at least one of the analyzed distances (.81 ≥ r ≥ .30 and .001 ≤ P ≤ .03, respectively). These variables also displayed variation across the race (.001 ≤ P ≤ .05). Conclusions: The ability to undertake a high degree of pace variability, mostly characterized by acceleration in the final stages, is strongly associated with achievement of high finishing positions in championship 10,000-m racing. Furthermore, the adoption and maintenance of positions close to the front of the race from the early stages are important to achieve a high finishing position.

Restricted access

Josu Gomez-Ezeiza, Jordan Santos-Concejero, Jon Torres-Unda, Brian Hanley, and Nicholas Tam

Purpose: To analyze the association between muscle activation patterns on oxygen cost of transport in elite race walkers over the entire gait waveform. Methods: A total of 21 Olympic race walkers performed overground walking trials at 14 km·h−1 where muscle activity of the gluteus maximus, adductor magnus, rectus femoris, biceps femoris, medial gastrocnemius, and tibialis anterior were recorded. Race walking economy was determined by performing an incremental treadmill test ending at 14 km·h−1. Results: This study found that more-economical race walkers exhibit greater gluteus maximus (P = .022, r = .716), biceps femoris (P = .011, r = .801), and medial gastrocnemius (P = .041, r = .662) activation prior to initial contact and weight acceptance. In addition, during the propulsive and the early swing phase, race walkers with higher activation of the rectus femoris (P = .021, r = .798) exhibited better race walking economy. Conclusions: This study suggests that the neuromuscular system is optimally coordinated through varying muscle activation to reduce the metabolic demand of race walking. These findings highlight the importance of proximal posterior muscle activation during initial contact and hip-flexor activation during early swing phase, which are associated with efficient energy transfer. Practically, race walking coaches may find this information useful in the development of specific training strategies on technique.