Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Bryan R. Picco x
Clear All Modify Search
Restricted access

Bryan R. Picco, Meghan E. Vidt and Clark R. Dickerson

Scapular kinematics are important indicators of dyskinesis, often suggesting underlying shoulder pathology, but the influence of sex is unknown. This study’s objective was to examine scapular kinematics in healthy males and females. Positions of surface-mounted reflective markers were tracked during arm elevation movements in 0°/30°/40°/60°/90°/120° planes. Scapulothoracic rotations (protraction/retraction, medial/lateral rotation, posterior/anterior tilt) were calculated. ANOVA analysis evaluated main and interaction effects of sex, plane, phase, and elevation angle. Males and females had similar protraction/retraction and medial/lateral rotation kinematics; mean sex-related peak angle differences were 2.5°, 1.8° (raise [concentric]), respectively, and 2.9°, 2.7° (lower [eccentric]), respectively. Largest sex differences for mean peak angle occurred for posterior/anterior tilt at higher elevation angles (raise, 8.4°; lower, 8.5°). Elevation, plane, and phase were main effects for all scapular rotations (P < .001). Sex was not a main effect for any rotations. Sex × elevation interactions influenced protraction/retraction (P < .001) and posterior/anterior tilt (P < .001). Sex × plane (P ≤ .01) and sex × phase (P ≤ .002) interactions influenced all rotations. Lower posterior tilt for females compared to males at higher elevation angles could relate to higher female shoulder pathology incidence. Sex, plane, and phase are necessary components of uninjured scapular kinematics. Sex-specific differences provide insight into potential shoulder pathology etiology. These data provide a benchmark to assess pathological populations.

Restricted access

Steven L. Fischer, Bryan R. Picco, Richard P. Wells and Clark R. Dickerson

Exerting manual forces is critical during occupational performance. Therefore, being able to estimate maximum force capacity is particularly useful for determining how these manual exertion demands relate to available capacity. To facilitate this type of prediction requires a complete understanding of how maximum force capacity is governed biomechanically. This research focused on identifying how factors including joint moment strength, balance and shoe-floor friction affected hand force capacity during pulling, pressing downward and pushing medially. To elucidate potential limiting factors, joint moments were calculated and contrasted with reporte joint strength capacities, the balancing point within the shoe-floor interface was calculated and expresess relative to the area defined by the shoe-floor interface, and the net applied horizontal forces were compare with the available friction. Each of these variables were calculated as participants exerted forces in a series o conditions designed to systematically control or restrict certain factors from limiting hand force capacity. The results demonstrated that hand force capacity, in all tested directions, was affected by the experimental conditions (up to 300%). Concurrently, biomechanical measures reached or surpassed reported criterion threshold inferring specific biomechanical limitations. Downward exertions were limited by elbow strength, wherea pulling exertions were often limited by balance along the anterior-posterior axis. No specific limitations wer identified for medial exertions.