Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Cédric Leduc x
Clear All Modify Search
Restricted access

Jonathon Weakley, Kevin Till, John Sampson, Harry Banyard, Cedric Leduc, Kyle Wilson, Greg Roe and Ben Jones

Purpose: Feedback can enhance acute physical performance. However, its effects on physical adaptation have received little attention. Therefore, the purpose of this study was to determine the effect of feedback during a 4-wk training program on jump, sprint, and strength adaptations. Methods: A total of 28 semiprofessional male rugby union players were strength-matched into 2 groups (feedback and nonfeedback). During the 4-wk training program, the Feedback group received immediate, objective feedback on (1) mean concentric velocity during resistance training repetitions, (2) distance feedback for standing broad jumps, and (3) time for sprints. The Nonfeedback group was not provided additional information. Across the 4-wk mesocycle, subjects completed 3 strength and conditioning sessions per week. Countermovement jump, standing long jump, 10- and 20-m sprint, and 3-repetition-maximum barbell back squat and bench press were measured before and after the training intervention. Magnitude-based inferences assessed meaningful changes within and between groups. Results: The Feedback group showed small to moderate improvements in outcome measures, whereas the Nonfeedback group demonstrated trivial to small improvements. Improvements in countermovement-jump relative peak power (effect size ± 90% confidence limits: 0.34 ± 0.42), 10-m (0.20 ± 0.35) and 20-m sprints (0.40 ± 0.21), and 3-repetition-maximum back squats (0.23 ± 0.17) were possibly to likely greater for the Feedback condition than for Nonfeedback. Conclusions: Providing augmented feedback during strength and conditioning routines can enhance training adaptations compared with athletes who do not receive feedback. Consequently, practitioners should consider providing kinematic outputs, displacement, or sprint time at the completion of each repetition as athletes train.

Restricted access

Abd-Elbasset Abaïdia, Julien Lamblin, Barthélémy Delecroix, Cédric Leduc, Alan McCall, Mathieu Nédélec, Brian Dawson, Georges Baquet and Grégory Dupont


To compare the effects of cold-water immersion (CWI) and whole-body cryotherapy (WBC) on recovery kinetics after exercise-induced muscle damage.


Ten physically active men performed single-leg hamstring eccentric exercise comprising 5 sets of 15 repetitions. Immediately postexercise, subjects were exposed in a randomized crossover design to CWI (10 min at 10°C) or WBC (3 min at –110°C) recovery. Creatine kinase concentrations, knee-flexor eccentric (60°/s) and posterior lower-limb isometric (60°) strength, single-leg and 2-leg countermovement jumps, muscle soreness, and perception of recovery were measured. The tests were performed before and immediately, 24, 48, and 72 h after exercise.


Results showed a very likely moderate effect in favor of CWI for single-leg (effect size [ES] = 0.63; 90% confidence interval [CI] = –0.13 to 1.38) and 2-leg countermovement jump (ES = 0.68; 90% CI = –0.08 to 1.43) 72 h after exercise. Soreness was moderately lower 48 h after exercise after CWI (ES = –0.68; 90% CI = –1.44 to 0.07). Perception of recovery was moderately enhanced 24 h after exercise for CWI (ES = –0.62; 90% CI = –1.38 to 0.13). Trivial and small effects of condition were found for the other outcomes.


CWI was more effective than WBC in accelerating recovery kinetics for countermovement-jump performance at 72 h postexercise. CWI also demonstrated lower soreness and higher perceived recovery levels across 24–48 h postexercise.

Restricted access

Bruno Marrier, Yann Le Meur, Cédric Leduc, Julien Piscione, Mathieu Lacome, Germain Igarza, Christophe Hausswirth, Jean-Benoît Morin and Julien Robineau

Purpose: To describe the training periodization in rugby sevens players competing in the World Rugby Sevens Series during a non-Olympic season. Methods: Workload data were collected over a 33-wk period in 12 male players participating in a full competitive season. Workload was quantified using session rating of perceived exertion and global positioning system–derived data during training and competition. Self-reported well-being was assessed using a questionnaire. Each variable was analyzed weekly and through 5 mesocycles (preseason, in-season 1–4), each of which ended with competition blocks. Results: The perceived load decreased throughout the season for the full squad (−68% [26%] between preseason and final competitive block, large effect) and when unavailable players were removed from the analysis (−38% [42%], moderate). Weekly perceived load was highly variable, with a typical periodization in 4 phases during each mesocycle (regeneration, training overload, taper, and competition). During the preseason, the workload was higher during the overload training phase than during the competitive period (range: +23% to +59%, large to very large, for the distance covered above individual maximal aerobic speed and the number of accelerations). This observation no longer persisted during the season. The well-being score decreased almost certainly from in-season 3 (moderate). Conclusions: These results highlighted the apparent difficulty in maintaining high-load training periods throughout the season in players engaged on the World Rugby Sevens Series despite ∼4–7 training weeks separating each competitive block. This observation was likely explained by the difficulties inherent to the World Rugby Sevens Series (risk of contact injury, calendar, and multiple long-haul travel episodes) and potentially by limited squad-rotation policies.