Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Caroline Sunderland x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Bryan Saunders, Craig Sale, Roger C. Harris, and Caroline Sunderland

Purpose:

To investigate the separate and combined effects of sodium bicarbonate and beta-alanine supplementation on repeated sprints during simulated match play performed in hypoxia.

Methods:

Study A: 20 recreationally active participants performed two trials following acute supplementation with either sodium bicarbonate (0.3 g·kg−1BM) or placebo (maltodextrin). Study B: 16 recreationally active participants were supplemented with either a placebo or beta-alanine for 5 weeks (6.4 g·day−1 for 4 weeks, 3.2 g·day−1 for 1 week), and performed one trial before supplementation (with maltodextrin) and two following supplementation (with sodium bicarbonate and maltodextrin). Trials consisted of 3 sets of 5 × 6 s repeated sprints performed during a football specific intermittent treadmill protocol performed in hypoxia (15.5% O2). Mean (MPO) and peak (PPO) power output were recorded as the performance measures.

Results:

Study A: Overall MPO was lower with sodium bicarbonate than placebo (p = .02, 539.4 ± 84.5 vs. 554.0 ± 84.6 W), although there was no effect across sets (all p > .05). Study B: There was no effect of beta-alanine, or cosupplementation with sodium bicarbonate, on either parameter, although there was a trend toward higher MPO with sodium bicarbonate (p = .07).

Conclusions:

The effect of sodium bicarbonate on repeated sprints was equivocal, although there was no effect of beta-alanine or cosupplementation with sodium bicarbonate. Individual variation may have contributed to differences in results with sodium bicarbonate, although the lack of an effect with beta-alanine suggests this type of exercise may not be influenced by increased buffering capacity.

Restricted access

Bryan Saunders, Craig Sale, Roger C. Harris, and Caroline Sunderland

Purpose:

To determine whether gastrointestinal (GI) distress affects the ergogenicity of sodium bicarbonate and whether the degree of alkalemia or other metabolic responses is different between individuals who improve exercise capacity and those who do not.

Methods:

Twenty-one men completed 2 cycling-capacity tests at 110% of maximum power output. Participants were supplemented with 0.3 g/kg body mass of either placebo (maltodextrin) or sodium bicarbonate (SB). Blood pH, bicarbonate, base excess, and lactate were determined at baseline, preexercise, immediately postexercise, and 5 min postexercise.

Results:

SB supplementation did not significantly increase total work done (TWD; P = .16, 46.8 · 9.1 vs 45.6 · 8.4 kJ, d = 0.14), although magnitude-based inferences suggested a 63% likelihood of a positive effect. When data were analyzed without 4 participants who experienced GI discomfort, TWD (P = .01) was significantly improved with SB. Immediately postexercise blood lactate was higher in SB for the individuals who improved but not for those who did not. There were also differences in the preexercise-to-postexercise change in blood pH, bicarbonate, and base excess between individuals who improved and those who did not.

Conclusions:

SB improved high-intensity-cycling capacity but only with the exclusion of participants experiencing GI discomfort. Differences in blood responses suggest that SB may not be beneficial to all individuals. Magnitude-based inferences suggested that the exercise effects are unlikely to be negative; therefore, individuals should determine whether they respond well to SB supplementation before competition.