Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Caroline Young x
Clear All Modify Search
Restricted access

Ben Desbrow, Katelyn Barnes, Caroline Young, Greg R. Cox and Chris Irwin

Immediate postexercise access to fruit/fluid via a recovery “station” is a common feature of mass participation sporting events. Yet little evidence exists examining their impact on subsequent dietary intake. The aim of this study was to determine if access to fruit/water/sports drinks within a recovery station significantly alters dietary and fluid intakes in the immediate postexercise period and influences hydration status the next morning. 127 (79 males) healthy participants (M ± SD, age = 22.5 ± 3.5y, body mass (BM) = 73 ± 13kg) completed two self-paced morning 10km runs separated by 1 week. Immediately following the first run, participants were randomly assigned to enter (or not) the recovery station for 30min. All participants completed the alternate recovery option the following week. Participants recorded BM before and after exercise and measured Urine Specific Gravity (USG) before running and again the following morning. For both trial days, participants also completed 24h food and fluid records via a food diary that included photographs. Paired-sample t tests were used to assess differences in hydration and dietary outcome variables (Recovery vs. No Recovery). No difference in preexercise USG or BM change from exercise were observed between treatments (p’s > .05). Attending the recovery zone resulted in a greater total daily fluid (Recovery = 3.37 ± 1.46L, No Recovery = 3.16 ± 1.32L, p = .009) and fruit intake (Recovery = 2.37 ± 1.76 servings, No Recovery = 1.55 ± 1.61 servings, p > .001), but had no influence on daily total energy (Recovery = 10.15 ± 4.2MJ, No Recovery = 10.15 ± 3.9MJ), or macronutrient intakes (p > .05). Next morning USG values were not different between treatments (Recovery = 1.018 ± 0.007, No Recovery = 1.019 ± 0.009, p > .05). Recovery stations provide an opportunity to modify dietary intake which promote positive lifestyle behaviors in recreational athletes.

Restricted access

Ben Desbrow, Katelyn Barnes, Gregory R. Cox, Elizaveta Iudakhina, Danielle McCartney, Sierra Skepper, Caroline Young and Chris Irwin

This study assessed voluntary dietary intake when different beverages were provided within a recovery area following recreational exercise. Participants completed two 10-km runs 1 week apart. Immediately after the first run, “beer drinkers” (n = 54; mean ± SD: age = 23.9 ± 5.8 years, body mass [BM] = 76 ± 13 kg) randomly received low-alcohol beer (Hahn Ultra® [Lion Co.], 0.9% alcohol by volume) or sports drink (SD; Gatorade® [PepsiCo]), whereas “nonbeer drinkers” (n = 78; age = 21.8 ± 2.2 years, BM = 71 ± 13 kg) received water or SD. Participants remained in a recovery area for 30–60 min with fluid consumption monitored. The following week, participants received the alternate beverage. Participants recorded all food/fluid consumed for the remainder of both trial days (diary and photographs). Fluid balance was assessed via BM change and urine specific gravity. Paired t tests were used to assess differences in hydration and dietary variables. No differences were observed in preexercise urine specific gravity (∼1.01) or BM loss (∼2%) between intervention groups (ps > .05). Water versus SD: No difference in acute fluid intake was noted (water = 751 ± 259 ml, SD = 805 ± 308 ml, p = .157). SD availability influenced total energy and carbohydrate intakes (water = 5.7 ± 2.5 MJ and 151 ± 77 g, SD = 6.5 ± 2.7 MJ and 187 ± 87 g, energy p = .002, carbohydrate p < .001). SD versus beer: SD availability resulted in greater acute fluid intake (SD = 1,047 ± 393 ml, beer = 850 ± 630 ml; p = .004), which remained evident at the end of trial days (SD = 3,337 ± 1,100 ml, beer = 2,982 ± 1,191 ml; p < .01). No differences in dietary variables were observed. Next day, urine specific gravity values were not different between water versus SD. However, a small difference was detected between SD versus beer (SD = 1.021 ± 0.009, beer = 1.016 ± 0.008, p = .002). Consuming calorie-containing drinks postexercise appears to increase daily energy and carbohydrate intake but has minimal impact on next-day hydration.