Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Charles L. Stebbins x
Clear All Modify Search
Restricted access

Rose M. Giordano, John W. Newman, Theresa L. Pedersen, Marisa I. Ramos and Charles L. Stebbins

Metabolites of the cytochrome P450 (CYP) pathway may contribute to vasodilation of the vasculature. However, it is not known whether exercise affects their circulating concentrations. The authors determined effects of exercise intensity and duration on plasma concentrations of epoxy and dihydroxy metabolites of arachidonic acid. Their goal was to delineate the threshold workload, optimal workload, and duration required to produce increases in plasma concentrations of these vasoactive substances. Healthy volunteers (N = 14) performed maximal exercise testing on a bicycle ergometer during Visit 1. On separate days, subjects cycled for 20 min at 30%, 60%, and 80% of their maximal exercise intensity. The last day consisted of 40 min of exercise at 60% of maximal exercise intensity. Venous blood was obtained before, during, and after exercise for analysis. Compared with rest, increases were observed during the 80% workload at 20 min postexercise —14,15-DHET (0.77 ± 0.21 vs. 0.93 ± 0.27 nM)—and at 2 min postexercise: 11,12-DHET (0.64 ± 0.22 vs. 0.71 ± 0.24 nM; p < .05). Also compared with rest, 40-min values during the 60% workload were 14,15-DHET 0.79 ± 0.22 vs. 0.91 ± 0.31 nM and at 2 min post 14,15 EET 0.12 ± 0.06 vs. 0.21 ± 0.16 nM (p < .05). Results suggest the CYP metabolites (i.e., DHETs) are released during short-term high-intensity and long-term moderateintensity exercise.

Restricted access

Charles L. Stebbins, Lauren E. Hammel, Benjamin J. Marshal, Espen E. Spangenberg and Timothy I. Musch

The polyunsaturated fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) affect vascular relaxation and involve factors (e.g., nitric oxide) that contribute to exercise-induced increases in skeletal-muscle blood flow (Q). The authors investigated whether DHA and EPA supplementation augments skeletal-muscle Q and vascular conductance (VC) and attenuates renal and splanchnic Q and VC in exercising rats. Rats were fed a diet of 5% lipids by weight, of which 20% was DHA and 30% EPA (PUFA group, n = 9), or 5% safflower oil (SO group, n = 8) for 6 wk. Heart rate (HR), blood pressure (MAP), and hind-limb, renal, and splanchnic Q were measured at rest and during moderate treadmill running. MAP, HR, and renal and splanchnic Q and VC were similar between the 2 groups at rest and during exercise. In the PUFA group, Q (158 ± 27 vs. 128 ± 28 ml · min−1 · 100 g−1) and VC (1.16 ± 0.21 vs. 0.92 ± 0.23 ml · min−1 · 100 g−1 · mm Hg−1) were greater in the exercising hind-limb muscle. Q and VC were also higher in 8 of 28 and 11 of 28 muscles and muscle parts, respectively. These increases were positively correlated to the percent sum of Types I and IIa fibers. Results suggest that DHA+EPA (a) enhances Q and VC in active skeletal muscle (especially Type I and IIa fibers) and that the increase in Q is due to an increase in cardiac output secondary to increases in VC and (b) has no apparent influence on vasoconstriction in renal and splanchnic tissue.