Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Charli Sargent x
Clear All Modify Search
Restricted access

Jordan L. Fox, Robert Stanton, Charli Sargent, Cody J. O’Grady and Aaron T. Scanlan

Purpose: To quantify and compare external and internal game workloads according to contextual factors (game outcome, game location, and score-line). Methods: Starting semiprofessional, male basketball players were monitored during 19 games. External (PlayerLoad and inertial movement analysis variables) and internal (summated-heart-rate-zones and rating of perceived exertion [RPE]) workload variables were collected for all games. Linear mixed-effect models and effect sizes were used to compare workload variables based on each of the contextual variables assessed. Results: The number of jumps, absolute and relative (in min−1) high-intensity accelerations and decelerations, and relative changes-of-direction were higher during losses, whereas session RPE was higher during wins. PlayerLoad the number of absolute and relative jumps, high-intensity accelerations, absolute and relative total decelerations, total changes-of-direction, summated-heart-rate-zones, session RPE, and RPE were higher during away games, whereas the number of relative high-intensity jumps was higher during home games. PlayerLoad, the number of high-intensity accelerations, total accelerations, absolute and relative decelerations, absolute and relative changes-of-direction, summated-heart-rate-zones, sRPE, and RPE were higher during balanced games, whereas the relative number of total and high-intensity jumps were higher during unbalanced games. Conclusions: Due to increased intensity, starting players may need additional recovery following losses. Given the increased external and internal workload volumes encountered during away games and balanced games, practitioners should closely monitor playing times during games. Monitoring playing times may help identify when players require additional recovery or reduced training volumes to avoid maladaptive responses across the in-season.

Restricted access

Nathan W. Pitchford, Sam J. Robertson, Charli Sargent, Justin Cordy, David J. Bishop and Jonathan D. Bartlett

Purpose:

To assess the effects of a change in training environment on the sleep characteristics of elite Australian Rules football (AF) players.

Methods:

In an observational crossover trial, 19 elite AF players had time in bed (TIB), total sleep time (TST), sleep efficiency (SE), and wake after sleep onset (WASO) assessed using wristwatch activity devices and subjective sleep diaries across 8-d home and camp periods. Repeated-measures ANOVA determined mean differences in sleep, training load (session rating of perceived exertion [RPE]), and environment. Pearson product–moment correlations, controlling for repeated observations on individuals, were used to assess the relationship between changes in sleep characteristics at home and camp. Cohen effect sizes (d) were calculated using individual means.

Results:

On camp TIB (+34 min) and WASO (+26 min) increased compared with home. However, TST was similar between home and camp, significantly reducing camp SE (–5.82%). Individually, there were strong negative correlations for TIB and WASO (r = -.75 and r = -.72, respectively) and a moderate negative correlation for SE (r = -.46) between home and relative changes on camp. Camp increased the relationship between individual s-RPE variation and TST variation compared with home (increased load r = -.367 vs .051, reduced load r = .319 vs –.033, camp vs home respectively).

Conclusions:

Camp compromised sleep quality due to significantly increased TIB without increased TST. Individually, AF players with higher home SE experienced greater reductions in SE on camp. Together, this emphasizes the importance of individualized interventions for elite team-sport athletes when traveling and/or changing environments.

Restricted access

Aaron T. Scanlan, Robert Stanton, Charli Sargent, Cody O’Grady, Michele Lastella and Jordan L. Fox

Purpose: To quantify and compare internal and external workloads in regular and overtime games and examine changes in relative workloads during overtime compared with other periods in overtime games in male basketball players. Methods: Starting players for a semiprofessional male basketball team were monitored during 2 overtime games and 2 regular games (nonovertime) with similar contextual factors. Internal (rating of perceived exertion and heart-rate variables) and external (PlayerLoad and inertial movement analysis variables) workloads were quantified across games. Separate linear mixed-models and effect-size analyses were used to quantify differences in variables between regular and overtime games and between game periods in overtime games. Results: Session rating-of-perceived-exertion workload (P = .002, effect size 2.36, very large), heart-rate workload (P = .12, 1.13, moderate), low-intensity change-of-direction events to the left (P = .19, 0.95, moderate), medium-intensity accelerations (P = .12, 1.01, moderate), and medium-intensity change-of-direction events to the left (P = .10, 1.06, moderate) were higher during overtime games than during regular games. Overtime periods also exhibited reductions in relative PlayerLoad (first quarter P = .03, −1.46, large), low-intensity accelerations (first quarter P = .01, −1.45, large; second quarter P = .15, −1.22, large), and medium-intensity accelerations (first quarter P = .09, −1.32, large) compared with earlier periods. Conclusions: Overtime games disproportionately elevate perceptual, physiological, and acceleration workloads compared with regular games in starting basketball players. Players also perform at lower external intensities during overtime periods than earlier quarters during basketball games.