Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Christian Marquardt x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Examination of Visual Information as a Mediator of External Focus Benefits

William M. Land, Gershon Tenenbaum, Paul Ward, and Christian Marquardt

Attunement to visual information has been suggested to mediate the performance advantage associated with adopting an external focus of attention (e.g., Al-Abood, Bennett, Moreno Hernandez, Ashford, & Davids, 2002; Magill, 1998). We tested this hypothesis by examining the extent to which online visual information underpins the external focus advantage. The study examined skilled golfers on a putting task under one of three attentional focus conditions: control (no instructions), irrelevant (tone counting), and external (movement effect focus), with either full or occluded vision. In addition to task performance, the effect of attentional focus and vision on between-trial movement variability was examined. We found a significant advantage for an external focus of attention in the absence of vision. The results of the movement variability analysis further indicated that external focus was not mediated by the online use of vision. We discuss these findings in the context of traditional cognitive perspectives to external focus effects.

Restricted access

Effects of Changing Gravity on Anticipatory Grip Force Control during Point-to-Point Movements of a Hand-Held Object

Dennis A. Nowak, Joachim Hermsdörfer, Jens Philipp, Christian Marquardt, Stefan Glasauer, and Norbert Mai

We investigated the quality of predictive grip force control during gravity changes induced by parabolic flight maneuvers. During these maneuvers gravity varied: There were 2 periods of hypergravity, in which terrestrial gravity nearly doubled, and a 20-s period of microgravity, during which a manipulated object was virtually weightless. We determined grip and load forces during vertical point-to-point movements of an instrumented object. Point-to-point movements were a combination of static (stationary holding) and dynamic (continuous movements) task conditions, which were separately analyzed in our previous studies. Analysis of the produced grip forces revealed that grip adjustments were closely linked to load force fluctuations under each gravity condition. In particular, grip force maxima coincided closely in time with load force peaks, although these occurred at different phases of the movement depending on the gravity level. However, quantitative analysis of the ratio of maximum grip force to the corresponding load force peak revealed an increased force ratio during microgravity when compared to that during normal and hypergravity, We hypothesize that the impaired precision of force coupling with respect to force magnitude during microgravity results from reduced feedback information about the object's mass during the stationary holding of the object in between each movement. The results indicate that the temporal grip force regulation is highly automatized and stable, whereas economical planning of force magnitude is more flexible and might reflect changes of the external loading condition.